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Abstract. The variety of quasi-N4-lattices (QN4) was recently introduced as a
non-involutive generalization of N4-lattices (algebraic models of Nelson’s para-
consistent logic). While research on these algebras is still at a preliminary stage,
we know that QN4 is an arithmetical variety which possesses a ternary as well
as a quaternary deductive term, enjoys equationally definable principal con-
gruences and the strong congruence extension property. We furthermore have
recently introduced an algebraizable logic having QN4 as its equivalent seman-
tics. In this contribution we report on the results obtained so far on this class of
algebras and on its logical counterpart.

1. Introduction
Nelson’s constructive logic with strong negation [Nelson 1949] and its non-explosive
counterpart, Nelson’s paraconsistent logic [Almukdad and Nelson 1984] are two promi-
nent non-classical logics whose algebraic models (resp. Nelson algebras and N4-lattices)
have been extensively investigated [Sendlewski 1990, Odintsov 2003, Odintsov 2004,
Spinks and Veroff 2018]. A recent series of papers introduced and investigated the class
of quasi-Nelson algebras (a subvariety of commutative integral bounded residuated lat-
tices) as a non-involutive generalization of Nelson algebras [Rivieccio and Spinks 2021];
the corresponding logic was axiomatized in [Liang and Nascimento 2019]. A simi-
lar abstraction was applied to the class of N4-lattices in [Rivieccio 2022], intro-
ducing the class of quasi-N4-lattices (i.e. non-involutive N4-lattices, or non-integral
quasi-Nelson algebras); the corresponding logic is defined and shown to be algebrai-
zable in [Lima Neto et al. 2022]. While the papers [Rivieccio 2020, Rivieccio 2021,
Rivieccio and Spinks 2021, Rivieccio and Jansana 2021] already constitute, in our opi-
nion, sufficient evidence for motivating the intrinsic interest in quasi-Nelson algebras, it
remains to be seen to which extent the structure theory of the latter can be extended to
the setting of quasi-N4-lattices. In this contribution we report on our current knowledge
about these algebras and indicate some topics that appear to deserve further investigation.

2. Quasi-N4-lattices
As mentioned earlier, the models of Nelson’s paraconsistent logic (N4-lattices, N4) are a
class of lattices that further possess an “intuitionistic-like” implication (→) and a “strong”
negation (∼) satisfying the De Morgan laws and the double negation identity (∼∼x ≈ x).
Among N4-lattices, the models of Nelson’s (explosive) logic (Nelson algebras, N) are
precisely those that satisfy the identity x → x ≈ y → y. A class of non-necessarily



involutive Nelson algebras has been recently introduced under the name of quasi-Nelson
algebras (QN), and Nelson algebras are precisely the quasi-Nelson algebras that satisfy
the double negation identity. By applying a similar abstraction process to N4-lattices, one
obtains non-necessarily involutive N4-lattices or quasi-N4-lattices (QN4): among them,
the quasi-Nelson algebras are precisely those that satisfy the identity x → x ≈ y → y,
and the N4-lattices are precisely those that satisfy the double negation identity. We thus
have the following inclusions (all proper): N ⊆ N4 ⊆ QN4, N ⊆ QN ⊆ QN4. It is clear
that N = QN∩N4, and an argument can be made to show that the variety generated by the
class QN∪N4 is properly contained in QN4 (see [Rivieccio and Jansana 2021, Sect. 3.1]
and [Rivieccio 2022, Example 2.6]); we do not currently have an equational presentation
for this variety.

In this section we present two equivalent presentations for quasi-N4-lattices; a
corresponding (algebraizable) logic LQN4 will be introduced in Section 3.

A Brouwerian algebra is an algebra B = ⟨B;∧,∨,→⟩ such that ⟨B;∧,∨⟩ is a
lattice with order ≤ and → is the residuum of ∧, that is, a ∧ b ≤ c iff a ≤ b → c, for
all a, b, c ∈ B. Brouwerian algebras are precisely the bottom-free subreducts of Heyting
algebras, the algebraic counterpart of intuitionistic logic. Given a Brouwerian algebra
B = ⟨B;∧,∨,→⟩, we say that a unary operator □ : B → B is a nucleus if, for all
a, b ∈ B, we have (i) □(a ∧ b) = □a ∧ □b and (ii) a ≤ □a = □□a. We shall refer
to an algebra B = ⟨B;∧,∨,→,□⟩ as a nuclear Brouwerian algebra [Rivieccio 2022,
Def. 2.1].

Definition 1 ([Rivieccio 2022], Def. 2.2). Let B = ⟨B;∧,∨,→,□⟩ be a nuclear Brouwe-
rian algebra. The algebra B▷◁ = ⟨B × B;∧,∨,→,∼⟩ is defined as follows. For all
⟨a1, a2⟩, ⟨b1, b2⟩ ∈ B ×B,

∼⟨a1, a2⟩ = ⟨a2,□a1⟩
⟨a1, a2⟩ ∧ ⟨b1, b2⟩ = ⟨a1 ∧ b1,□(a2 ∨ b2)⟩
⟨a1, a2⟩ ∨ ⟨b1, b2⟩ = ⟨a1 ∨ b1, a2 ∧ b2⟩
⟨a1, a2⟩ → ⟨b1, b2⟩ = ⟨a1 → b1,□a1 ∧ b2⟩.

A quasi-N4 twist-structure A over B is a subalgebra of B▷◁ satisfying the following pro-
perties: π1[A] = B and □a2 = a2 for all ⟨a1, a2⟩ ∈ A, where π1 denote the first projection
function.

The preceding definition provides a “concrete” way of producing examples of
quasi-N4-lattices (see e.g. [Rivieccio 2022, Example 2.6]). In fact, as we shall see (Theo-
rem 1), all quasi-N4-lattices may be obtained in this way.

Given an algebra A having an operation → and elements a, b ∈ A, we abbre-
viate |a| := a → a, and define the relations ≡ and ⪯ as follows. We let a ⪯ b iff
a → b = |a → b|, and ≡:=⪯ ∩(⪯)−1. Thus one has a ≡ b iff (a ⪯ b and b ⪯ a).

Definition 2 ([Rivieccio 2022], Def. 3.2). A quasi-N4-lattice (QN4-lattice) is an algebra
A = ⟨A;∧,∨,→,∼⟩ of type ⟨2, 2, 2, 1⟩ satisfying the following properties:

(QN4a) The reduct ⟨A;∧,∨⟩ is a distributive lattice with lattice order ≤.



(QN4b) The relation ≡ is a congruence on the reduct ⟨A;∧,∨,→⟩ and the quotient
B(A) = ⟨A;∧,∨,→⟩/≡ is a Brouwerian algebra. Moreover, the operator □
given by □[a] := ∼∼ a/≡ for all a ∈ A is a nucleus, so the algebra ⟨B(A),□⟩ is
a nuclear Brouwerian algebra.

(QN4c) For all a, b ∈ A, it holds that a ≤ b iff a ⪯ b and ∼ b ⪯ ∼ a.
(QN4d) For all a, b ∈ A, it holds that ∼(a → b) ≡ ∼∼(a ∧ ∼ b).
(QN4e) For all a, b ∈ A,

(QN4e.1) a ≤ ∼∼ a.
(QN4e.2) ∼ a = ∼∼∼ a.
(QN4e.3) ∼(a ∨ b) = ∼ a ∧ ∼ b.
(QN4e.4) ∼∼ a ∧ ∼∼ b = ∼∼(a ∧ b).
The preceding definition is a straightforward generalization of Odintsov’s defini-

tion of N4-lattices [Odintsov 2003]; indeed, a quasi-N4-lattice A is an N4-lattice if and
only if A is involutive, that is, ∼∼ a ≤ a for all a ∈ A [Rivieccio 2022, Prop. 3.8].

Theorem 1 ([Rivieccio 2022], Thm. 3.3). Every quasi-N4-lattice A is isomorphic to a
twist-structure over ⟨B(A),□⟩ by the map ι : A → A/≡×A/≡ given, for all a ∈ A, by
ι(a) := ⟨a/≡,∼ a/≡⟩.

The non-equational presentation of QN4-lattices given in Definition 2 can be
replaced with an equational one, entailing that QN4-lattices form a variety of algebras.

Proposition 1 ([Rivieccio 2022], Prop. 3.7). Items (QN4b) and (QN4c) in Definition 2
can be equivalently replaced by the following identities:

1. |x| → y ≈ y.
2. (x ∧ y) → x ≈ |(x ∧ y) → x|.
3. (x ∧ y) → z ≈ x → (y → z).
4. (x ⇔ y) → x ≈ (x ⇔ y) → y.
5. (x ∨ y) → z ≈ (x → z) ∧ (y → z).
6. x → (y ∧ z) ≈ (x → y) ∧ (x → z).
7. (x → y) ∧ (y → z) ⪯ x → z.
8. x → y ⪯ x → (y ∨ z).
9. x → (y → z) ≈ (x → y) → (x → z).

10. x → y ⪯ ∼∼ x → ∼∼ y.

3. The logic of Quasi-N4-lattices
In this section we look at the logical counterpart of Quasi-N4-lattices, which is the logic
LQN4 introduced via a Hilbert-style calculus in [Lima Neto et al. 2022].

Fix a denumerable set P of propositional variables, and let p ∈ P . The language
of LQN4 is defined recursively as follows:

α ::= p | ∼α | (α ∧ α) | (α ∨ α) | (α → α)

To simplify the notation, we shall henceforth omit the outmost parenthesis. We
use FP to denote the set of all formulas. A logic is defined as a finitary and substitution-
invariant consequence relation ⊢⊆ ℘(FP)× FP determined by a Hilbert-style calculus in
the usual way. The calculus for LQN4 consists of the following axiom schemes together
with the single inference rule of modus ponens (MP): p, p → q ⊢ q.



Ax1 p → (q → p)
Ax2 (p → (q → r)) → ((p → q) → (p → r))
Ax3 (p ∧ q) → p
Ax4 (p ∧ q) → q
Ax5 (p → q) → ((p → r) → (p → (q ∧ r)))
Ax6 p → (p ∨ q)
Ax7 q → (p ∨ q)
Ax8 (p → r) → ((q → r) → ((p ∨ q) → r))
Ax9 ∼(p ∨ q) ↔ (∼ p ∧ ∼ q)
Ax10 ∼(p → q) ↔ ∼∼(p ∧ ∼ q)
Ax11 ∼(p ∧ (q ∧ r)) ↔ ∼((p ∧ q) ∧ r)
Ax12 ∼(p ∧ (q ∨ r)) ↔ ∼((p ∧ q) ∨ (p ∧ r))
Ax13 ∼(p ∨ (q ∧ r)) ↔ ∼((p ∨ q) ∧ (p ∨ r))
Ax14 ∼∼(p ∧ q) ↔ (∼∼ p ∧ ∼∼ q)
Ax15 p → ∼∼ p
Ax16 p → (∼ p → ∼(p → p))
Ax17 (p → q) → (∼∼ p → ∼∼ q)
Ax18 ∼ p → ∼(p ∧ q)
Ax19 ∼(p ∧ q) → ∼(q ∧ p)
Ax20 (∼ p → ∼ q) → (∼(p ∧ q) → ∼ q)
Ax21 (∼ p → ∼ q) → ((∼ r → ∼ s) → (∼(p ∧ r) → ∼(q ∧ s)))
Ax22 ∼∼∼ p → ∼ p.

Recall that Ax1-Ax8 (together with modus ponens) constitute an axiomatization
of the negation-free fragment of intuitionistic logic. In consequence, LQN4 enjoys the
classical Deduction Theorem: Γ, α ⊢ β is equivalent to Γ ⊢ α → β.

For an algebraizable logic L [Font 2016, Def. 3.11], we say that L is finitely
algebraizable when the set of equivalence formulas is finite, and we say that L is BP-
algebraizable when L is finitely algebraizable and the set of defining identities is finite.
Let us abbreviate x ⇒ y := (x → y) ∧ (∼ y → ∼ x) and x ⇔ y := (x ⇒ y) ∧ (y ⇒ x).
The following result is an easy rephrasing of [Lima Neto et al. 2022, Thm. 4].

Theorem 2. LQN4 is BP-algebraizable with defining identity E(α) := α ≈ |α| and
equivalence formula ∆(α, β) := α ⇔ β.

By Theorem 2, we can obtain an axiomatization of the equivalent quasi-variety
semantics Alg∗(LQN4) of LQN4 as follows.

Definition 3. An Alg∗(LQN4)-algebra is a structure A = ⟨A;∧,∨,→,∼⟩ which satisfies
the following identities and quasi-identities:

1. α ≈ |α| for each axiom α of LQN4.
2. x ⇔ x ≈ |x ⇔ x|.
3. x ⇔ y ≈ |x ⇔ y| implies x ≈ y.
4. x ≈ |x| and x → y ≈ |x → y| implies y ≈ |y|.

As showed in [Lima Neto et al. 2022, Cor. 1], the class of algebras introduced
in Definition 3 coincides with the variety of QN4-lattices (Definition 2), that is,
Alg∗(LQN4) = QN4.



4. Filters and congruence properties

In this section we look at filters of QN4-lattices and state a number of congruence-
theoretic properties of this class of algebras; some of them are immediate conse-
quences of the above-mentioned algebraizability result, but all are also proven directly
in [Rivieccio 2022].

Recall that a filter of a Brouwerian algebra B is a (non-empty) lattice filter of
the underlying lattice or, equivalently, a set F ⊆ B that is non-empty and closed under
modus ponens, meaning that a, a → b ∈ F entail b ∈ F for all a, b ∈ B. The (po)set
of all filters of a Brouwerian algebra B will be denoted by Fi(B). Similarly, given a
quasi-N4-lattice A and F ⊆ A, we shall say that F is an (implicative) filter if (i) |a| ∈ F
for all a ∈ A, and (ii) F is closed under modus ponens (if a, a → b ∈ A, then b ∈ F , for
all a, b ∈ A). The (po)set of all filters of a quasi-N4-lattice A is denoted by Fi(A).

Theorem 3 ([Rivieccio 2022], Thm. 4.2). For every QN4-lattice A ≤ B▷◁, the first-
coordinate projection map π1 is a complete order isomorphism between Fi(A) and
Fi(B).

Given a QN4-lattice A and a congruence θ ∈ Con(A), we define Fθ := {a ∈ A :
⟨a, |a|⟩ ∈ θ}. Conversely, for each F ∈ Fi(A), we let:

θF := {⟨a, b⟩ ∈ A× A : a ⇔ b ∈ F}.

Theorem 4 ([Rivieccio 2022], Thm. 4.4). The maps given by θ 7→ Fθ and F 7→ θF
establish a complete order isomorphism between Fi(A) and Con(A).

It is well known that the nucleus does not alter the congruences of a Brouwerian
algebra [Rivieccio 2022, Lemma 4.6]; thus we have the following result.

Corollary 1 ([Rivieccio 2022], Cor. 4.6). Let A ≤ B▷◁ be a quasi-N4-lattice, where
B = ⟨B,∧,∨,→,□⟩. Then Con(A) ∼= Con(B) = Con(⟨B,∧,∨,→⟩).

For the unexplained universal algebraic terms employed below,
see [Burris and Sankappanavar 2012].

Corollary 2 ([Rivieccio 2022], Cor. 4.13). Let A ≤ B▷◁ be a quasi-N4-lattice, where
B = ⟨B,∧,∨,→,□⟩. The following are equivalent:

1. A is directly indecomposable (resp., subdirectly irreducible, simple).
2. ⟨B,∧,∨,→⟩ is a directly indecomposable (resp., subdirectly irreducible, simple)

Brouwerian algebra.

The variety of QN4-lattices possesses a ternary deduction term and a quaternary
deductive term in the sense of [Blok and Pigozzi 1994], as well as a Maltsev term wit-
nessing congruence-permutability. This entails that quasi-N4-lattices enjoy equationally
definable principal congruences and the strong version of the congruence extension
property considered in [Blok and Pigozzi 1994, Def. 2.10].

Theorem 5 ([Rivieccio 2022], Thm. 4.9). q(x, y, z) := (x ⇔ y) → z is a commutative
ternary deduction term for QN4 in the sense of [Blok and Pigozzi 1994].



Applying Theorem 5, we note that, for every quasi-N4-lattice A, the principal
congruence generated by elements a, b ∈ A is given by:

θ(a, b) = {⟨c, d⟩ : (a ⇔ b) → c = (a ⇔ b) → d}.

Theorem 6 ([Rivieccio 2022], Thm. 4.10). QN4 is congruence-permutable with Maltsev
term:

p(x, y, z) := (((x ⇒ y) ∧ |z|) ⇒ z) ∧ (((z ⇒ y) ∧ |x|) ⇒ x).

As a variety of enriched lattices, quasi-N4-lattices are obviously congruence-
distributive. Thus, the preceding theorem extends the result of [Spinks and Veroff 2018,
Cor. 4.25] to our non-involutive setting.

Corollary 3 ([Rivieccio 2022], Cor. 4.11). QN4 is arithmetical.

Corollary 4 ([Rivieccio 2022], Cor. 4.12). QN4 has a quaternary deductive term:

t(x, y, z, w) := p(q(x, y, z), q(x, y, w), w),

where p(x, y, z) = (((x ⇒ y) ∧ |z|) ⇒ z) ∧ (((z ⇒ y) ∧ |x|) ⇒ x) and q(x, y, z) =
(x ⇔ y) → z.

5. Ongoing and future research
As mentioned earlier, research on quasi-N4-lattices is necessarily at a preliminary stage,
and only time will tell to what extent further investigations on this and related classes
of algebras will prove fruitful. We mention below a few directions that appear to be of
obvious interest.

Refining the twist construction. By Theorem 1, we know that we can identify
an arbitrary quasi-N4-lattice A with a subalgebra of B▷◁ for some nuclear Brouwerian
algebra B. This establishes a correspondence (which may be rephrased as an adjunction
between suitably defined categories) between each nuclear Brouwerian algebra B and the
family of quasi-N4-lattices that canonically embed into B.

As shown in [Rivieccio 2022, Prop. 2.5], two further parameters ∇ and ∆ (respec-
tively, a lattice filter and an ideal of B) are sufficient to uniquely determine a twist-algebra
having the following set as underlying universe:

Tw(B,∇,∆) := {⟨a1, a2⟩ ∈ B ×B : a2 = □a2, a1 ∨ a2 ∈ ∇, a1 ∧ a2 ∈ ∆}.

We thus have a one-to-one correspondence between triples (B,∇,∆) and quasi-N4-
lattices, but we do not currently know whether every quasi-N4-lattice arises in this way.
If the latter was true, then the correspondence would yield an equivalence between the al-
gebraic category of quasi-N4-lattices and a category having as objects triples (B,∇,∆);
this is indeed known to hold for N4-lattices [Rivieccio and Jansana 2021].

Ongoing research on the non-involutive twist construction suggests that the ques-
tion may be settled at least for every quasi-N4-lattice B that possesses a residuated lattice
structure, that is, further algebraic operations 1 and ∗ such that ⟨B, ∗,1⟩ is a (commuta-
tive) monoid and the pair (∗,⇒) is residuated. The resulting class of algebras, which we



may dub residuated quasi-N4-lattices, is also relevant to the research direction discussed
below.

Quasi-N4-lattices as residuated structures. As observed in [Rivieccio 2022,
Rem. 3.5], the so-called weak implication → is definable in quasi-N4-lattices using the
so-called strong one ⇒ and the conjunction ∧. Recalling that the strong implication
is the ‘substructural implication’ of (quasi-)N4-lattices, this suggests that it is possi-
ble to axiomatize the class of quasi-N4-lattices and the corresponding logic in the lan-
guage {∧,∨,⇒,∼}, which in turn may allow us to establish a more direct compari-
son with (algebras of) relevance logics. However, given the defining term employed
in [Rivieccio 2022, Rem. 3.5], we may expect the axiomatizations thus obtained to be
rather unwieldy.

The picture may become more clear if we are willing to further expand the lan-
guage of QN4 by introducing connectives corresponding to the above-mentioned monoid
conjunction ∗ (and maybe the identity 1 as well); the resulting algebraic models will be
a class of residuated structures, which one may hope study within the theory of paracon-
sistent Nelson RW-algebras developed in [Spinks and Veroff 2018].

Quasi-N4-lattices and relevant algebras. The paper [Galatos and Raftery 2015]
introduced the variety of generalized Sugihara monoids as a non-involutive generalization
of algebraic models of the relevant logic R-mingle, a class of algebras known as Sugihara
monoids. One of the main results of Galatos and Raftery is that generalized Sugihara
monoids are representable through a twist construction which has striking similarities
with the one for quasi-N4-lattices. The factor algebras employed in their twist construc-
tion are in fact nuclear Brouwerian algebras that are also prelinear (i.e. representable as
subdirect products of linearly ordered ones).

While the equational properties of the two above-mentioned classes of algebras
suggest that a direct comparison between (generalized) Sugihara monoids and (quasi-)
N4-lattices is not likely to prove fruitful, we speculate that the twist construction may be
used to establish a meaningful connection. Indeed, since the twist representation is used
in [Galatos and Raftery 2015] to establish a categorical equivalence between generalized
Sugihara monoids and prelinear nuclear Brouwerian algebras, it may be possible to apply
a similar strategy to quasi-N4-lattices, namely, single out a subcategory of (perhaps en-
riched) quasi-N4-lattices that may be proved to be equivalent as a category to the prelinear
nuclear Brouwerian algebras considered in [Galatos and Raftery 2015]. An equivalence
with generalized Sugihara monoids would then be obtained as an immediate corollary.
We leave this as a final suggestion for further research.
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