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Algebrização em lógicas quase-Nelson

Autor: Clodomir Silva Lima Neto

Orientador: Umberto Rivieccio

Resumo
A lógica quase-Nelson é uma generalização recentemente introduzida da

lógica construtiva com negação forte de Nelson para um cenário não involutivo.

O presente trabalho se propõe a estudar a lógica de alguns fragmentos da

lógica de quase-Nelson, a saber: pocrims (ℒQNP) e semihoops (ℒQNS); além

da lógica de quase-N4-reticulados (ℒQN4). Isso é feito por meio de uma

axiomatização através de um cálculo finito no estilo Hilbert. A principal

questão que abordaremos é se a semântica algébrica de um determinado

fragmento da lógica quase-Nelson (ou classe quase-N4-reticulados) pode

ser axiomatizada por meio de equações ou quase-equações. A ferramenta

matemática utilizada nesta investigação será a representação twist-álgebra.

Chegando à questão da algebrização, lembramos que a lógica quase-Nelson

(como extensão de ℱℒew) é algebrizável no sentido de Blok e Pigozzi. Além

disso, mostramos a algebrizabilidade de ℒQNP, ℒQNS e LQN4, que é BP-

algebrizável com o conjunto de equações definidoras E(x) := {x = x → x}

e o conjunto de fórmulas de equivalência ∆(x , y) := {x → y, y → x ,∼ x →

∼ y,∼ y → ∼ x}.

Palavras-chave: Lógica quase-Nelson. Quase-N4-reticulados. Lógica Alge-

brizável. Estruturas Twist.



Algebraization in quasi-Nelson logics
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Abstract
Quasi-Nelson logic is a recently introduced generalization of Nelson’s cons-

tructive logic with strong negation to a non-involutive setting. The present

work proposes to study the logic of some fragments of quasi-Nelson logic,

namely: pocrims (ℒQNP) and semihoops (ℒQNS); in addition to the logic of

quasi-N4-lattices (ℒQN4). This is done by means of an axiomatization via

a finite Hilbert-style calculus. The principal question which we will address

is whether the algebraic semantics of a given fragment of quasi-Nelson logic

(or class of quasi-N4-lattices) can be axiomatized by means of equations or

quasi-equations. The mathematical tool used in this investigation will be the

twist-algebra representation. Coming to the question of algebraizability, we

recall that quasi-Nelson logic (as extensions of ℱℒew) is algebraizable in the

sense of Blok and Pigozzi. Furthermore, we showed the algebraizability of

ℒQNP, ℒQNS and ℒQN4, which is BP-algebraizable with the set of defining

equations E(x) := {x = x → x} and the set of equivalence formulas ∆(x , y) :=

{x → y, y → x ,∼ x → ∼ y,∼ y → ∼ x}.

Keywords: Quasi-Nelson logic. Quasi-N4-lattices. Algebraizable logic. Twist-

structures.
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1 Introduction

In this chapter we present the objective of our research and, informally, what it

means to algebraize a logic. This dissertation aims to present algebraic semantics for the

logic of quasi-N4-lattices and for two fragments of quasi-Nelson logic.

Constructive logic with strong negation (𝒩 3) introduced by David Nelson in

[18] is a conservative expansion of positive intuitionist logic with an involutive negation.

Nelson’s paraconsistent logic (𝒩 4), a generalization of 𝒩 3 obtained by abandoning the

explosive axiom p → (∼ p → q), appears later in a paper together with Ahmad Almukdad

[1]. 𝒩 3 and 𝒩 4 have, as algebraic semantics, the variety of Nelson algebras and the

variety of N4-lattices, respectively.

Another generalization of 𝒩 3 is obtained by abandoning the double negation

axiom ∼∼ p → p. This is quasi-Nelson logic (𝒬𝒩ℒ), which was introduced in [25]

and whose algebraic semantics is the variety of quasi-Nelson algebras. Recent research

([20], [21], [24], [17]) has focused on the question of characterizing logics/algebras that

correspond to fragments of 𝒬𝒩ℒ.

Umberto Rivieccio [22] introduced the class of quasi-N4-lattices (QN4-lattices),

as a common generalization of the varieties of N4-lattices and the varieties of quasi-Nelson

algebras. In other words, N4-lattices are precisely the quasi-N4-lattices satisfying the law

of double negation, and quasi-Nelson algebras are precisely the QN4-lattices satisfying

the explosive law.

In most general terms, we may say that algebraizing a logic consists in obtaining
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a class of algebras whose equational consequence mirrors the behavior of logic. Thus, the

goal of algebraization is to obtain a relation in which the elements of an algebra represent

“generalized truth values” of the logic, the connectives of the logic are correspond to

algebraic operations and the axioms of a logic are interpreted as equations valid in algebra.

In the case of the most well-behaved logics, it may be shown that the logical consequence

and the equational consequence relation are equivalent in a strong sense. A well-known

example of this relationship is the one Boolean algebras to classical propositional logic.

We understand by Abstract Algebraic Logic the set of techniques, results and

studies on this relationship, between the logics and respective algebras. Coming to the

question of algebraizability, we recall that both 𝒩 3 and 𝒬𝒩ℒ (as extensions of ℱℒew -

Full Lambek calculus with exchange and weakening) are algebraizable in the sense of

Blok and Pigozzi [2]; for more details, see [19] and [14].

In this dissertation, we propose an algebraization for ℒQN4, for ℒQNP and for

ℒQNS by the method of Blok and Pigozzi. Actually, the main result is to introduce logics

and show that they are algebraizable with respect to classes of algebras that had been

interpreted in the papers by Umberto Rivieccio and to characterize the corresponding

fragments of the logics, which until now had not been presented.

The present document is organized as follows: Chapter 2 introduces the basic

concepts and terminology involving algebra, logics and their algebraization. Chapter 3

introduces the concept of nuclei. Then, chapters 4 and 5 describes our proposal for the

algebraization of non-involutive Nelson logics, in 4 we presents of quasi-N4-lattices and

their logic ℒQN4; in 5 we present some fragments of 𝒬𝒩ℒ, in particular, quasi-Nelson

pocrims and their logic ℒQNP; and quasi-Nelson semihoops and their logic ℒQNS. In the

conclusion, we reflect upon the results obtained and indicate some directions for future

developments.
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2 Theoretical Background

In this chapter we introduce the theory and methods that will be used in this

document. We present two components to specify a logic, namely: a language (the

“formulas” of the logic), and a relation of consequence (derivability, inference), often

denoted by ⊢. This relation can be defined or presented in several ways, here we follow

the deductive way: we use some concepts of proof in a formal system, normally called

calculus. The two kinds main are the so-called Hilbert-style or axiomatic calculi, and

Gentzen-style or sequent calculi, here we use the first kind. At the end of this chapter,

we introduce the process of algebraization, that is, the process by which we associate a

certain class of algebras to a particular deductive system (or logic).

2.1 Algebra

In this section, we present some definitions of basic elements of the study of

Universal Algebra, whose history is strongly linked to the study of the relationship

between Logic and Mathematics. For a more complete presentation, we recommend [6].

Definition 1 ([6], Def. 1.1, Cha. I). A nonempty set L together with two binary

operations ∧ and ∨ (read “meet” and “join” respectively) on L is called a lattice if it

satisfies the following equations:

(L1) commutative laws: x ∧ y = y ∧ x and x ∨ y = y ∨ x .

(L2) associative laws: x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z .
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(L3) idempotent laws: x ∧ x = x and x ∨ x = x .

(L4) absorption laws: x = x ∧ (x ∨ y) and x = x ∨ (x ∧ y).

Before introducing the second definition of a lattice we need the notion of a

partial order on a set.

Definition 2 ([6], Def. 1.2, Cha. I). A binary relation ≤ defined on a set A is a partial

order on the set A if the following conditions hold identically in A:

1. reflexivity: a ≤ a.

2. antisymmetry: a ≤ b and b ≤ a imply a = b

3. transitivity: a ≤ b and b ≤ c imply a ≤ c.

A nonempty set with a partial order on it is called a partially ordered set or poset.

Remark 1. A relation ≤ on a set A which is reflexive and transitive but not necessarily

antisymmetric is called quasiorder or pre-order.

Example 1 ([6], Exa. 1, Cha. I). Let ℘(A) denote the power set of A, i.e. the set of all

subsets of A. Then ⊆ is a partial order on ℘(A).

Definition 3 ([6], Def. 1.3, Cha. I). Let A be a subset of a poset P. An element p ∈ P

is an upper bound for A if a ≤ p for every a ∈ A. An element p ∈ P is the least upper

bound of A, or supremum of A (sup A) if p is an upper bound of A, and a ≤ b for every

a ∈ A implies p ≤ b. Dually we can define what it means for p to be a lower bound of

A, and for p to be the greatest lower bound of A, also called the infimum of A (inf A).

Now let us look at the second approach to lattices.

Definition 4 ([6], Def. 1.4, Cha. I). A poset L is a lattice iff for every a, b ∈ L both

sup{a, b} and inf{a, b} exist (in L).

Definition 5 ([6], Def. 3.1, Cha. I). A distributive lattice is a lattice which satisfies

the distributive laws:

(DL1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

4



(DL2) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Theorem 1 ([6], Thm. 3.2, Cha. I). A lattice L satisfies (DL1) iff it satisfies (DL2).

We have now established the concept of an algebra; focusing on this, we discuss

the notions of subalgebra, congruence, quotient algebra, homomorphism, direct product,

variety, term algebras and free algebra.

Definition 6 ([6], Def. 1.1, Cha. II). For A a nonempty set and n a nonnegative integer

we define A0 = {∅} and for n > 0, An is the set of n-tuples of elements from A. An n-ary

operation (or function) on A is any function f from An to A; n is the arity (or rank) of

f . A finitary operation is an n-ary operation, for some n. The image of ⟨a1, . . . , an⟩ under

an n-ary operation f is denoted by f (a1, . . . , an). An operation f on A is called a nullary

operation (or constant) if its arity is zero; it is completely determined by the image f (∅)

in A of the only element ∅ in A0. Thus a nullary operation is thought of as an element of

A. An operation f on A is unary, binary or ternary if its arity is 1, 2, or 3, respectively.

Definition 7 ([6], Def. 1.2, Cha. II). A algebraic language (or type) of algebras is a

set F of function symbols such that a nonnegative integer n is assigned to each member

f of F . This integer is called the arity (or rank) of f , and f is said to be an n-ary function

symbol. The subset of n-ary function symbols in F is denoted by Fn.

When specifying a particular language, it is customary to describe language and

the function f as the sequence; for instance, one says “let ⟨∧,∨,→,⊥,⊤⟩ be a language

of type ⟨2, 2, 2, 0, 0⟩”.

Definition 8 ([6], Def. 1.3, Cha. II). If F is a language of algebras then an algebra

A of type ℱ is an ordered pair ⟨A; F⟩ where A is a nonempty set called universe of

A; and F is a family of finitary operations on A indexed by the language F such that

corresponding to each n-ary function symbol f in ℱ there is an n-ary operation f A on A,

where f A’s are called the fundamental operations of A.
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When an algebraic language F is interpreted in a domain or mathematical

universe, to specify one of them one writes A = ⟨A; f (a1, . . . , an)⟩. It is traditional to

write 0 for ⊥A and 1 for ⊤A. For instance, one says “let A = ⟨A; →,∼, 0, 1⟩ be an

algebra of type ⟨2, 1, 0, 0⟩”.

Example 2 ([6], Exa. 1, Cha. II). A group is an algebra G = ⟨G; *,−1 , 1⟩ of type

⟨2, 1, 0⟩ in which the following equations are true:

(G1) x * (y * z) = (x * y) * z .

(G2) x * 1 = 1 * x = x .

(G3) x * x−1 = x−1 * x = 1.

A group G is Abelian (or commutative) if the following equation is true:

(G4) x * y = y * x .

Example 3 ([6], Exa. 2, Cha. II). A semigroup is a ordered pair ⟨S ; *⟩ in which (G1)

is true. A monoid is an algebra M = ⟨M ; *, 1⟩ of type ⟨2, 0⟩ satisfying (G1) and (G2).

Example 4 ([6], Exa. 7, Cha. II). A semilattice is a semigroup ⟨S ; *⟩ which satisfies

the commutative law (G4) and the idempotent law

(S1) x * x = x .

Example 5 ([6], Exa. 8, Cha. II). A lattice is an algebra L = ⟨L; ∧,∨⟩ of type ⟨2, 2⟩

which satisfies (L1)–(L4).

Example 6 ([6], Exa. 9, Cha. II). A bounded lattice is an algebra A = ⟨A; ∧,∨, 0, 1⟩

of type ⟨2, 2, 0, 0⟩ which satisfies:

(BL1) ⟨A; ∧,∨⟩ is a lattice.

(BL2) x ∧ 0 = 0 and x ∨ 1 = 1.

Example 7 ([15], Def. 1). A Brouwerian algebra or implicative lattice is an algebra

B = ⟨B; ∧,∨,→⟩ of type ⟨2, 2, 2⟩ such that:

(B1) ⟨B; ∧,∨⟩ is a lattice with order ≤.
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(B2) For a, b, c ∈ B, a ∧ b ≤ c iff a ≤ b → c.

Example 8 ([23], Def. 2.1). An algebra H = ⟨H ; →, 1⟩ of type ⟨2, 0⟩ is called Hilbert

algebra if the following hold.

(H1) x → (y → x) = 1.

(H2) x → (y → z) = (x → y)→ (x → z).

(H3) if x → y = y → x = 1 then x = y.

Example 9 ([6], Exa. 11, Cha. II). An algebra H = ⟨H ; ∧,∨,→, 0, 1⟩ of type ⟨2, 2, 2, 0⟩

is called Heyting algebra if the following hold.

(HA1) ⟨H ; ∧,∨⟩ is a distributive lattice.

(HA2) x ∧ 0 = 0 and x ∨ 1 = 1.

(HA3) x → x = 1.

(HA4) (x → y) ∧ y = y and x ∧ (x → y) = x ∧ y.

(HA5) x → (y ∧ z) = (x → y) ∧ (x → z) and (x ∨ y)→ z = (x → z) ∧ (y → z).

Definition 9 ([6], Exa. 10, Cha. II). An algebra B = ⟨B; ∧,∨,∼, 0, 1⟩ of type

⟨2, 2, 1, 0, 0⟩ is called Boolean algebra if the following hold.

(BA1) ⟨B; ∧,∨⟩ is a distributive lattice.

(BA2) x ∧ 0 = 0 and x ∨ 1 = 1.

(BA3) x ∧ ∼ x = 0 and x ∨ ∼ x = 1.

Example 10 ([26]). A De Morgan algebra is an algebra A = ⟨A; ∧,∨,∼, 0, 1⟩ of

type ⟨2, 2, 1, 0, 0⟩ which satisfies:

(DM1) ⟨A; ∧,∨⟩ is a distributive lattice.

(DM2) ∼(x ∧ y) = ∼ x ∨ ∼ y.

(DM3) ∼(x ∨ y) = ∼ x ∧ ∼ y.

(DM4) x ∧ 0 = 0.

7



(DM5) ∼ 1 = 0.

Example 11 ([16], Def. 1.2). An algebra A = ⟨A; ∧,∨,→,∼, 1⟩ of type ⟨2, 2, 2, 1, 0⟩ is

called Nelson algebra (or N-lattice) if the following hold.

(N1) x ∨ 1 = 1.

(N2) x ∧ (x ∨ y) = x .

(N3) x ∧ (y ∨ z) = (z ∧ x) ∨ (y ∧ x).

(N4) ∼∼ x = x .

(N5) ∼(x ∧ y) = ∼ x ∨ ∼ y.

(N6) x ∧ ∼ x = (x ∧ ∼ x) ∧ (y ∨ ∼ y).

(N7) x → x = 1.

(N8) x ∧ (x → y) = x ∧ (∼ x ∨ y).

(N9) (x ∧ y)→ z = x → (y → z).

(N10) (x → y) ∧ (∼ x ∨ y) = ∼ x ∨ y.

(N11) x → (y ∧ z) = (x → y) ∧ (x → z).

Example 12 ([19], Def. 5.1). An algebra A = ⟨A; ∧,∨,→,∼⟩ is said to be an N4-

lattice if the following hold.

(N4.1) The reduct ⟨A; ∧,∨,∼⟩ is a De Morgan algebra and the following equations

hold: ∼(p ∨ q) = ∼ p ∧ ∼ q and ∼∼ p = p.

(N4.2) The relation ⪯, where a ⪯ b denotes (a → b) → (a → b) = a → b, is a

preordering on A.

(N4.3) The relation =, where a = b if and only if a ⪯ b and b ⪯ a, is a congruence

relation with respect to ∨, ∧, → and the quotient-algebra ⟨A; ∨,∧,→⟩/ = is an

implicative lattice.

(N4.4) For any a, b ∈ A, ∼(a → b) = a ∧ ∼ b.

8



(N4.5) For any a, b ∈ A, a ≤ b if and only if a ⪯ b and ∼ b = ∼ a where ≤ is a lattice

ordering on A.

Example 13 ([11]). An algebra A = ⟨A; ∧,∨, *, /, ∖, 0, 1⟩ of type ⟨2, 2, 2, 2, 2, 0, 0⟩ is

called Full Lambek algebra or FL-algebra if the following hold.

(FL1) ⟨A; ∧,∨⟩ is a lattice.

(FL2) ⟨A; *, 1⟩ is a monoid.

(FL3) For x , y, z ∈ A, x * y ≤ z iff x ≤ z/y iff y ≤ x∖z .

(FL4) 0 is an arbitrary element of A.

Example 14 ([25], Def. 2.1). A commutative integral bounded residuated lattice

(CIBRL) is an algebra A = ⟨A; ∧,∨, *,⇒, 0, 1⟩ of type ⟨2, 2, 2, 2, 0, 0⟩ such that:

(C1) ⟨A; ∧,∨, 0, 1⟩ is a bounded lattice with order ≤.

(C2) ⟨A; *, 1⟩ is a commutative monoid.

(C3) For a, b, c ∈ A, a * b ≤ c iff b ≤ a ⇒ c.

Example 15 ([25], Def. 2.3). A quasi-Nelson residuated lattice is a CIBRL that

satisfies the Nelson identity: (x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼ x)) = x ⇒ y.

In the next pages, we discuss the main notions about congruence.

Definition 10 ([6], Def. 4.4, Cha. I). Let A be a set. A binary relation R on A is an

equivalence relation on A if, for any a, b, c from A, it satisfies:

(E1) reflexivity: aRa.

(E2) symmetry: aRb implies bRa.

(E3) transitivity: aRb and bRc imply aRc.

Remark 2. Let A be a set. Recall that a binary relation R on A is a subset of A×A. If

⟨a, b⟩ ∈ R then we write aRb. Furthemore, Eqr(A) is a set of all equivalence relations on

A.

9



Definition 11 ([6], Def. 5.1, Cha. II). Let A be an algebra of type ℱ and let 𝜃 ∈ Eqr(A).

Then 𝜃 is a congruence on A if 𝜃 satisfies the following compatibility property:

(CP) For each n-ary function symbol f ∈ ℱ and elements ai , bi ∈ A, if ai𝜃bi holds for

1 6 i 6 n then f A(a1, . . . , an)𝜃f A(b1, . . . , bn) holds.

Remark 3. The set of all congruences on an algebra A is denoted by ConA.

Definition 12 ([6], Def. 5.2, Cha. II). Let 𝜃 be a congruence on an algebra A. Then

the quotient algebra of A by 𝜃, written A/𝜃, is the algebra whose universe is A/𝜃 and

whose operations satisfy f A/𝜃(a1/𝜃, . . . , an/𝜃) = f A(b1, . . . , bn)/𝜃 where a1, . . . , an ∈ A

and f is an n-ary function symbol in ℱ .

Remark 4. Note that quotient algebras of A are of the same type as A.

There are several important methods of constructing new algebras from given

ones. Three of the most fundamental are the formation of subalgebras, homomorphic

images, and direct products.

Definition 13 ([6], Def. 6.1, Cha. II). Let A and B be two algebras of the same type

ℱ . A mapping 𝛼 : A→ B is called a homomorphism from A to B if

𝛼f A(a1, . . . , an) = f B(𝛼a1, . . . 𝛼an)

for each n-ary f in ℱ and each sequence a1, . . . , an from A. If, in addition, the mapping 𝛼 is

onto then B is said to be a homomorphic image of A, and 𝛼 is called an epimorphism.

Remark 5. Let A and B be two algebras of the same type ℱ , then Hom(A,B) denotes

the set of all homomorphisms from A to B.

Definition 14 ([6], Def. 2.1, Cha. II). Let A and B be two algebras of the same type ℱ .

The function 𝛼 : A→ B is an isomorphism from A to B if 𝛼 is one-to-one and onto, and

for every n-ary f ∈ ℱ , for a1, . . . , an ∈ A, we have 𝛼f A(a1, . . . , an) = f B(𝛼a1, . . . , 𝛼an).

We say A is isomorphic to B, written A ∼= B, if there is an isomorphism from A to B.
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Definition 15 ([6], Def. 2.2, Cha. II). Let A and B be two algebras of the same type

ℱ . Then B is a subalgebra of A if B ⊆ A and every fundamental operation of B is the

restriction of the corresponding operation of A, i.e., for each function symbol of f , f B is

f A restricted to B, we write B 6 A.

Definition 16 ([6], Def. 7.1, Cha. II). Let A1 and A2 be two algebras of the same type

ℱ . Define the direct product A1 × A2 to be the algebra whose universe is the set

A1 × A2 and such that for f ∈ ℱn, ai ∈ A1, a′
i ∈ A2, 1 ≤ i ≤ n,

f A1×A2(⟨a1, a′
1⟩, . . . ⟨an, a′

n⟩) = ⟨f A1(a1, . . . , an), f A2(a′
1, . . . , a′

n)⟩

Definition 17 ([6], Def. 7.2, Cha. II). The mapping 𝜋i : A1 × A2 → Ai , i ∈ {1, 2}

defined by 𝜋i(⟨a1, a2⟩) = ai is called the projection map on the ith coordinate of

A1 × A2.

Definition 18 ([6], Def. 6.7, Cha. II). Let 𝛼 : A→ B be a homomorphism. Then the

kernel of 𝛼, written ker𝛼, is defined by ker𝛼 = {⟨a, b⟩ ∈ A× A; 𝛼(a) = 𝛼(b)}.

Theorem 2 ([6], Thm. 6.8, Cha. II). Let 𝛼 : A→ B be a homomorphism. Then ker𝛼

is a congruence on A.

A major theme in universal algebra is the study of classes of algebras (𝒦) of the

same type closed under one or more constructions.

Definition 19 ([6], Def. 9.1, Cha. II). We introduce the following operators mapping

classes of algebras to classes of algebras (all of the same type):

• A ∈ ℐ(𝒦) iff A is isomorphic to some member of 𝒦.

• A ∈ 𝒮(𝒦) iff A is a subalgebra to some member of 𝒦.

• A ∈ ℋ(𝒦) iff A is a homomorphic image to some member of 𝒦.

• A ∈ 𝒫(𝒦) iff A is a direct product of a nonempty family of algebras in 𝒦.
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Definition 20 ([6], Def. 9.3, Cha. II). A nonempty class 𝒦 of algebras of type ℱ is called

a variety if it is closed under homomorphic images, subalgebras, and direct products.

The algebras of formulas (Fm) is just what in universal algebra is called the

term algebra, defined later.

Definition 21 ([6], Def. 10.1, CHa. II). Let X be a set of (distinct) objects called

variables. Let ℱ be a type of algebras. The set T (X) of terms of type ℱ over X is the

smallest set such that

(i) X ∪ F0 ⊆ T (X).

(ii) If p1, . . . , pn ∈ T (X) and f ∈ Fn then the “string” f (p1, . . . , pn) ∈ T (X).

Example 16 ([6], Exa. 1, Chap. II). Let ℱ consist of a single binary function symbol *,

and let X = {x , y, z}. Then x, y, z , x * y, y * z , x * (y * z), (x * y) * z are some of the

terms over X .

One can, in a natural way, transform the set T (X) into an algebra.

Definition 22 ([6], Def. 10.4, Cha. II). Given ℱ and X , if T (X) ̸= ∅ then the term

algebra of type ℱ over X , written T(X), has as its universe the set T (X), and the

fundamental operations satisfy f T(X) : ⟨p1, . . . , pn⟩ ↦→ f (p1, . . . , pn) for f ∈ Fn and

pi ∈ T (X), 1 6 i 6 n.

Definition 23 ([6], Def. 10.5). Let 𝒦 be a class of algebras of type ℱ and let U(X) be

an algebra of type ℱ which is generated by X . If for every A ∈ 𝒦 and for every map

𝛼 : X → A there is a homomorphism 𝛽 : U(X)→ A which extends 𝛼, then we say U (X)

has the universal mapping property for 𝒦 over X , X is called a set of free generators

of U(X), and U(X) is said to be freely generated by X .

The next syntactic objects constructed from formulas are equations (or identi-

ties) and quasi-equations (or quasi-identities).
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Definition 24 ([6], Def. 11.1, Cha. II). An equation of type ℱ over X is an expression

of the form p = q, where p, q ∈ T (X).

• Let Id(X) be the set of equations of type ℱ over X . An algebra A of type ℱ satisfies

an equation p(x1, . . . , xn) = q(x1, . . . , xn) if for every choice of a1, . . . , an ∈ A, we

have pA(x1, . . . , xn) = qA(x1, . . . , xn).

• We say that the equation is true in A, or holds in A, and write A � p = q.

• If Σ is a set of equations, we say A satisfies Σ, written A � Σ if A � p = q for each

p = q ∈ Σ.

• A class 𝒦 of algebras satisfies p = q, written K � p = q, if each member of K

satisfies p = q.

• We say 𝒦 satisfies Σ, written 𝒦 � Σ if 𝒦 � p = q for each p = q ∈ Σ.

We can reformulate the above definition of satisfaction using the notion of

homomorphism.

Lemma 1 ([6], Lem. 11.2, Cha. II). If 𝒦 is a class of algebras of type ℱ and p = q

is an equation of type ℱ over X , then 𝒦 � p = q iff for every A ∈ K and for every

homomorphism 𝛼 : T(X)→ A we have 𝛼p = 𝛼q.

Lemma 2 ([6], Lem. 11.3, Cha. II). For any class 𝒦 of type ℱ , all of the classes 𝒦,

ℐ(𝒦), 𝒮(𝒦), ℋ(𝒦) and 𝒫(𝒦) satisfy the same equations over any set of variables X .

Remark 6. The set of all equations of the language L is denoted by Eq(FmL) or simply

by Eq.

Definition 25 ([6], Def. 11.7, Cha. II). Let Σ be a set of equations of type ℱ , and define

ℳ(Σ) to be the class of algebras A satisfying Σ. A class 𝒦 of algebras is an equational

class if there is a set of equations Σ such that 𝒦 =ℳ(Σ). In this case we say that 𝒦 is

defined, or axiomatized, by Σ.

Theorem 3 (Birkhoff). 𝒦 is an equational class iff 𝒦 is a variety.
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Proof. [6], Theorem 11.9.

Now, let’s move on to the definition of the reduce product, which result from a

certain combination of the direct product and quotient constructions.

Remark 7. Let I be a set. Recall that a filter F over I is a set F ⊆ ℘(I ) such that: (i)

I ∈ F ; (ii) if X , Y ∈ F then X ∩ Y ∈ F ; and (iii) if X ∈ F and X ⊆ Y then Y ∈ F .

Furthermore, if ℘(I ) ̸= F , then F is called a proper filter ; and, if F is maximal (that

is, for every filter F ′, F ′ ⊆ F), then F is called an ultrafilter .

Definition 26 ([6], Def. 2.1, Cha. V). Let (Ai)i∈I be a nonempty indexed family of

structures of type ℒ, and suppose F is a proper filter over I . Define the binary relation

𝜃F on
∏︁
i∈I

Ai by

⟨a, b⟩ ∈ 𝜃F iff {i ∈ I ; a(i) = b(i)} ∈ F

Lemma 3 ([6], Lem. 2.2, Cha. V). For (Ai)i∈I and F as above, the relation 𝜃F is

an equivalence relation on
∏︁
i∈I

Ai . For a fundamental n-ary operation of
∏︁
i∈I

Ai and

for ⟨a1, b1⟩, . . . , ⟨an, bn⟩ ∈ 𝜃F we have ⟨f (a1, . . . , an), f (b1, . . . , bn)⟩ ∈ 𝜃F , i.e., 𝜃F is a

congruence for the algebra part of A.

Definition 27 ([6], Def. 2.3, Cha. V). Given a nonempty indexed family of structures

(Ai)i∈I of type ℒ and a proper filter F over I , define the reduce product PR,
∏︁
i∈I

Ai/F

as follows. Let its universe
∏︁
i∈I

Ai/F be the set
∏︁
i∈I

Ai/𝜃F , and let a/F denote the element

a/𝜃F . For f an n-ary function symbol and for a1, . . . , an ∈
∏︁
i∈I

Ai , let

f (a1/F , . . . , an/F) = f (a1, . . . , an)/F

and for r an n-ary relation symbol, let r(a1/F , . . . , an/F) hold iff

{i ∈ I ; Ai � r(a1(i), . . . , an(i))} ∈ F
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If K is a nonempty class of structures of type ℒ, let PR(K ) denote the class of all reduced

products PR,
∏︁
i∈I

Ai/F , where Ai ∈ F .

Definition 28 ([6], Def. 2.24, Cha. V). A quasi-equation is an equation or a formula

of the form (p1 = q1 ∧ . . . ∧ pn = qn) → (p = q). A quasi-variety is a class of

algebras closed under isomorphism, subalgebra and reduce product, and containing the

one-element algebra.

Theorem 4 ([6], Thm. 2.25, Cha. V). Let 𝒦 be a class of algebras. Then the following

are equivalent:

(a) 𝒦 can be axiomatized by quasi-equations.

(b) 𝒦 is a quasi-variety.

2.2 Logic

After having defined formulas, one can consider other mathematical objects

constructed from them. The other linguistic objects that will appear in this document

are sequents. In the literature there are several kinds of sequents. The most common here

will be pairs Γ ⊢ 𝛼 where Γ is a finite set of formulas and 𝛼 is a formula. This notation

of sequents will be used to express (Hilbert-style) rules of logic without postulating them

of any particular logic; for instance the popular rule of Modus Ponens can be described

as the sequent {𝛼, 𝛼→ 𝛽} ⊢ 𝛽.

Definition 29 ([10], Def. 1.3). A substitution is an endomorphism 𝜎 : Fm → Fm.

For each 𝛼 ∈ Fm, 𝜎𝛼 is a substitution instance of 𝛼. The set of all substitutions is

denoted by End(Fm) := Hom(Fm,Fm).

Definition 30 ([10], Def. 1.5). A logic (of type L) is an ordered pair ℒ = ⟨L,⊢ℒ⟩ where

L is an algebraic language and ⊢ℒ ⊆ ℘(Fm) × Fm is a relation, called consequence

relation of the logic, satisfying the following properties, for all Γ ∪∆ ∪ {𝛼} ⊆ Fm:
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(R) Reflexivity: 𝛼 ∈ Γ implies Γ ⊢ℒ 𝛼.

(M) Monotonicity: (Γ ⊢ℒ 𝛼 and Γ ⊆ ∆) implies ∆ ⊢ℒ 𝛼.

(T) Transitivity: (Γ ⊢ℒ 𝛼 and ∆ ⊢ℒ 𝛽 for every 𝛽 ∈ Γ) implies ∆ ⊢ℒ 𝛼.

(S) Structurality: Γ ⊢ℒ 𝛼 implies 𝜎Γ ⊢ℒ 𝜎𝛼 for every substitution 𝜎.

Definition 31 ([10], Def. 1.6). A logic ℒ is finitary when the following holds for all

Γ ∪ {𝛼} ⊆ Fm:

(F) Γ ⊢ℒ 𝛼⇐⇒ ∃∆ ⊆ Γ, ∆ finite, such that ∆ ⊢ℒ 𝛼.

Associated with any logic are its various extensions, expansions and fragments.

By an extension of a logic ℒ over the language L we mean any system ℒ′ = ⟨L,⊢ℒ′⟩

over the same language such that Γ ⊢ℒ 𝛼 implies Γ ⊢ℒ′ 𝛼 for all Γ ∪ {𝛼} ⊆ Fm; ℒ is

called a conservative expansion of ℒ′ in this case. ℒ′ is an axiomatic extension of

ℒ if it is obtained by adjoining new axioms but leaving the rules of inference fixed. Let

ℒ′ be a sublanguage of ℒ, and let ⊢ℒ′ be the restriction of ⊢ℒ to ℒ in the sense that

Γ ⊢ℒ′ 𝛼 iff Γ ∪ {𝛼} ⊆ Fmℒ′ . ℒ′ is called the ℒ′-fragment of ℒ.

Definition 32 ([13], Def. 2.2). A proof in ℒ is a sequence 𝛼1, . . . , 𝛼n such that for

each i (1 ≤ i ≤ n), either 𝛼i is axiom of ℒ or 𝛼i follows from previous members of the

sequence, say 𝛼j and 𝛼k (j < i, k < i) as a direct consequence using rule of deduction MP.

Such a proof will be referred to as a proof of 𝛼n in ℒ, and 𝛼n is said to be a theorem of

ℒ.

Example 17 ([10], Exa. 1.9). Let ℋ be a Hilbert-style calculus on a set of formulas Fm

of type L. For every Γ ⊆ Fm and every 𝛼 ∈ Fm, the relation Γ ⊢ℋ𝒞 𝛼 is defined to hold if

and only if there is a proof of 𝛼 in ℋ𝒞 from assumptions in Γ. Then ⟨L,⊢ℋ𝒞⟩ is a finitary

logic and its theorems are the formulas that have a proof in ℋ from no assumptions

other than the axioms.

Remark 8. Every finitary logic can be defined by means of a Hilbert-style calculus.
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Throughout this document, we are going to make use of the Hilbert-style

presentation of a logic, in which there is only one rule of deduction, namely modus

ponens (abbreviated MP): {𝛼, 𝛼→ 𝛽} ⊢ 𝛽.

2.2.1 Positive logic

Positive logic ℒ𝒫 = ⟨Fm,⊢ℒ𝒫⟩ is the logic over the language ⟨∧,∨,→⟩ of type

⟨2, 2, 2⟩ defined by the Hilbert-style calculus with the following axioms and modus ponens

as the only rule:

A1 𝛼→ (𝛽 → 𝛼)

A2 (𝛼→ (𝛽 → 𝛾))→ ((𝛼→ 𝛽)→ (𝛼→ 𝛾))

A3 (𝛼 ∧ 𝛽)→ 𝛼

A4 (𝛼 ∧ 𝛽)→ 𝛽

A5 (𝛼→ 𝛽)→ ((𝛼→ 𝛾)→ (𝛼→ (𝛽 ∧ 𝛾)))

A6 𝛼→ (𝛼 ∨ 𝛽)

A7 𝛽 → (𝛼 ∨ 𝛽)

A8 (𝛼→ 𝛾)→ ((𝛽 → 𝛾)→ ((𝛼 ∨ 𝛽)→ 𝛾))

Proposition 1. If 𝛼 ∈ ℒ then ⊢ℒ𝒫 𝛼→ 𝛼.

Proof. [13], Example 2.7.

Positive logic satisfies the deduction theorem.

Theorem 5. (Deduction Theorem). If Φ ∪ {𝛼} ⊢ℒ𝒫 𝛽, then Φ ⊢ℒ𝒫 𝛼→ 𝛽.

Proof. [13], Proposition 2.8.

Remark 9. To prove Deduction Theorem (DT), we only need axioms (A1) and (A2)

of Positive Logic and the fact that modus ponens is the only inference rule.

As an immediate consequence of the Deduction Theorem, we have:
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Lemma 4. If 𝛼, 𝛽, 𝛾 ∈ ℒ then {𝛼→ 𝛽, 𝛽 → 𝛾} ⊢ℒ𝒫 𝛼→ 𝛾.

All logics considered in this document satisfy these conditions, thus DT remains

true for all logics considered below. Therefore, let’s look at several extensions of ⊢ℒ𝒫 :

1. Extending the language with {¬} and adding the following two axioms we will have

an axiomatization of intuitionistic logic, ⊢ℐ𝒩𝒯 :

INT1 𝛼→ (¬𝛼→ 𝛽)

INT2 (𝛼→ 𝛽)→ ((𝛼→ ¬𝛽)→ ¬𝛼)

2. Extending the language with {¬} and add the following three axioms we will have

an axiomatization of classical propositional logic, ⊢𝒞𝒫 :

CP1 𝛼 ∨ ¬𝛼

3. Extending the language with {∼} and the axioms of ⊢ℒ𝒫 with the following four

axiom schemes we obtain an axiomatization of the paraconsistent version of Nelson’s

logic, ⊢𝒩4:

A9 (∼∼𝛼→ 𝛼) ∧ (𝛼→ ∼∼𝛼)

A10 (∼(𝛼 ∨ 𝛽)→ (∼𝛼 ∧ ∼ 𝛽)) ∧ ((∼𝛼 ∧ ∼ 𝛽)→ ∼(𝛼 ∨ 𝛽))

A11 (∼(𝛼 ∧ 𝛽)→ (∼𝛼 ∨ ∼ 𝛽)) ∧ ((∼𝛼 ∨ ∼ 𝛽)→ ∼(𝛼 ∧ 𝛽))

A12 (∼(𝛼→ 𝛽)→ (𝛼 ∧ ∼ 𝛽)) ∧ ((𝛼 ∧ ∼ 𝛽)→ ∼(𝛼→ 𝛽))

4. Adding the following axiom to ⊢𝒩4, we will obtain the logic of Nelson ⊢𝒩3:

A13 ∼𝛼→ (𝛼→ 𝛽)

Remark 10. We abbreviate (𝛼→ 𝛽) ∧ (𝛽 → 𝛼) := (𝛼↔ 𝛽). Thus,

A9’ ∼∼𝛼↔ 𝛼.

A10’ ∼(𝛼 ∨ 𝛽)↔ (∼𝛼 ∧ ∼ 𝛽).

A11’ ∼(𝛼 ∧ 𝛽)↔ (∼𝛼 ∨ ∼ 𝛽).

A12’ ∼(𝛼→ 𝛽)↔ (𝛼 ∧ ∼ 𝛽).
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In the paper [14], we have other logic that satisfies the Deduction Theorem,

namely: quasi-Nelson logic (𝒬𝒩ℒ). This logic is obtained by adding the following axioms

to Positive Logic:

QNL9 ∼∼(∼𝛼→ ∼ 𝛽)→ (∼𝛼→ ∼ 𝛽)

QNL10 (∼𝛼 ∧ ∼ 𝛽)↔ ∼(𝛼 ∨ 𝛽)

QNL11 (∼∼𝛼 ∧ ∼∼ 𝛽)↔ ∼∼(𝛼 ∧ 𝛽)

QNL12 ∼∼∼𝛼→ ∼𝛼

QNL13 ∼(𝛼→ 𝛽)↔ ∼∼(𝛼 ∧ ∼ 𝛽)

QNL14 𝛼→ ∼∼𝛼

QNL15 (𝛼→ 𝛽)→ (∼∼𝛼→ ∼∼ 𝛽)

QNL16 ∼𝛼→ ∼(𝛼 ∧ 𝛽)

QNL17 ∼(𝛼 ∧ 𝛽)→ ∼(𝛽 ∧ 𝛼)

QNL18 ∼(𝛼 ∧ (𝛽 ∧ 𝛾))↔ ∼((𝛼 ∧ 𝛽) ∧ 𝛾)

QNL19 ∼𝛼→ ∼(𝛼 ∧ (𝛽 ∨ 𝛼))

QNL20 ∼𝛼→ ∼(𝛼 ∧ (𝛼 ∨ 𝛽))

QNL21 ∼(𝛼 ∧ (𝛽 ∨ 𝛾))↔ ∼((𝛼 ∧ 𝛽) ∨ (𝛼 ∧ 𝛾))

QNL22 ∼(𝛼 ∨ (𝛽 ∧ 𝛾))↔ ∼((𝛼 ∨ 𝛽) ∧ (𝛼 ∨ 𝛾))

QNL23 ∼𝛼↔ ∼(𝛼 ∧ (𝛽 → 𝛽))

QNL24 ∼(𝛼→ 𝛼)→ 𝛽

QNL25 (∼𝛼→ ∼ 𝛽)→ (∼(𝛼 ∧ 𝛽)→ ∼ 𝛽)

QNL26 (∼𝛼→ ∼ 𝛽)→ ((∼ 𝛾 → ∼ 𝜃)→ (∼(𝛼 ∧ 𝛾)→ ∼(𝛽 ∧ 𝜃)))

2.2.2 Full Lambek calculus with exchange and weakening

Since 𝒩 3 and 𝒬𝒩ℒ are obtained as axiomatic extensions of ℱℒew, it is worth

presenting a calculation for this logic. Thus, the logic ℱℒew = ⟨Fm,⊢ℱℒew⟩ is the logic
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over the language ⟨∨,∧,⇒, *,⊥,⊤⟩ of type ⟨2, 2, 2, 2, 0, 0⟩ defined by the Hilbert-style

calculus with the following axioms and modus ponens as the only rule:

(A1) (𝛼⇒ 𝛽)⇒ ((𝛽 ⇒ 𝛾)⇒ (𝛼⇒ 𝛾))

(A2) (𝛼⇒ (𝛽 ⇒ 𝛾))⇒ (𝛽 ⇒ (𝛼⇒ 𝛾))

(A3) 𝛼⇒ (𝛽 ⇒ 𝛼)

(A4) 𝛼⇒ (𝛽 ⇒ (𝛼 * 𝛽))

(A5) (𝛼⇒ (𝛽 ⇒ 𝛾))⇒ ((𝛼 * 𝛽)⇒ 𝛾)

(A6) (𝛼 ∧ 𝛽)⇒ 𝛼

(A7) (𝛼 ∧ 𝛽)⇒ 𝛽

(A8) (𝛼⇒ 𝛽)⇒ ((𝛼⇒ 𝛾)⇒ (𝛼⇒ (𝛽 ∧ 𝛾)))

(A9) 𝛼⇒ (𝛼 ∨ 𝛽)

(A10) 𝛽 ⇒ (𝛼 ∨ 𝛽)

(A11) (𝛼⇒ 𝛾)⇒ ((𝛽 ⇒ 𝛾)⇒ ((𝛼 ∨ 𝛽)⇒ 𝛾))

(A12) ⊤

(A13) ⊥ ⇒ 𝛼

2.3 Algebraizable Logics

In this section we formally define the concept of algebraic semantics and alge-

braizable logics that are extensively used in this document.

Given a logic ℒ, we are interested in associating its relation ⊢ℒ to a relation �𝒦

between sets of equations and equations in the language of a class of algebras 𝒦, in a

way that we can study �𝒦 to answer questions about ⊢ℒ and vice-versa. This relation �𝒦

is used, then, to define what an algebraic semantics for a logic is.

Definition 33 ([10], Def. 1.69). The relative equational consequence associated with
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a class 𝒦 of algebras is the relation �𝒦⊆ ℘(Eq)×Eq defined next: given Θ∪{𝛼 = 𝛽} ⊆ Eq,

Θ �𝒦 𝛼 = 𝛽
def⇐⇒ For every A ∈ 𝒦 and every h ∈ Hom(Fm,A),

if h(𝜑) = h(𝜓) for all 𝜑 = 𝜓 ∈ Θ, then h(𝛼) = h(𝛽).

The relation between the logic and relative equational consequence of a class

of algebras, is effected by means of two transformers, a generalization of the functions

𝛼 ↦−→ 𝛼 = ⊤ and 𝛼 = 𝛽 ↦−→ {𝛼→ 𝛽, 𝛽 → 𝛼} that transform a formula into an equation

and an equation into a set of formulas.

Definition 34 ([10], Def. 3.1). A transformer from formulas to sets of equations is any

function 𝜏 : Fm → ℘(Eq). It is extended to a function 𝜏 : ℘(Fm) → ℘(Eq) by setting,

for any Γ ⊆ Fm, 𝜏Γ :=
⋃︀
𝛾∈Γ

𝜏𝛾.

Definition 35 ([10], Def. 3.2). A transformer 𝜏 is structural when it commutes with

substitutions in the sense that 𝜏𝜎 = 𝜎𝜏 for every substitution 𝜎.

Proposition 2 ([10], Prop. 3.3). A transformer from formulas to equations 𝜏 is structural

if and only if there is a set of equations E(x) ⊆ Eq in at most one variable x such that

𝜏𝛼 = E𝛼 for all 𝛼 ∈ Fm.

Definition 36 ([10], Def. 3.4). Let ℒ be a logic, 𝒦 a class of algebras, and 𝜏 a structural

transformer. The class 𝒦 is an algebraic semantics for ℒ when the following condition

is satisfied, for all Γ ∪ {𝛼} ⊆ Fm:

(ALG1) Γ ⊢ℒ 𝛼⇐⇒ 𝜏Γ �𝒦 𝜏𝛼

The set E(x) corresponding to the transformer 𝜏 is called the set of defining

equations.

In the same way we defined a transformer from sets of formulas to sets of

equations, we define a transformer from set of equations to sets of formulas.
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Definition 37 ([10]). A transformer from equations to sets of formulas is any function

𝜌 : Eq → ℘(Fm). It is extended to a function 𝜌 : ℘(Eq) → ℘(Fm) by setting, for any

Θ ⊆ Eq, 𝜌Θ :=
⋃︀

𝛿=𝜖∈Θ
∆(𝛿, 𝜖).

Definition 38 ([10]). A transformer 𝜌 is structural when it commutes with unions.

Proposition 3 ([10]). A transformer from equations to formulas 𝜌 is structural if

and only if there is a set of formulas ∆(x , y) in at most two variables x , y such that

𝜌(𝛼 = 𝛽) = ∆(𝛼, 𝛽) for all 𝛼 = 𝛽 ∈ Eq.

The set ∆(x , y) corresponding to the transformer 𝜌 is called set of equivalence

formulas.

Definition 39 ([10], Def. 3.11). A logic ℒ is algebraizable when there is a class 𝒦 of

algebras and structural transformers 𝜏 , 𝜌 (from sets of formulas to sets of equations and

from sets of equations to sets of formulas, respectively) such that the following conditions

are satisfied, for all Γ ∪ {𝛼} ⊆ Fm and all Θ ∪ {𝛿 = 𝜖} ⊆ Eq:

(ALG1) Γ ⊢ℒ 𝛼⇐⇒ 𝜏Γ �𝒦 𝜏𝛼

(ALG2) Θ �𝒦 𝛿 = 𝜖⇐⇒ 𝜌Θ ⊢ℒ 𝜌(𝛿 = 𝜖)

(ALG3) 𝛼 ⊣⊢ℒ 𝜌𝜏𝛼

(ALG4) 𝛿 = 𝜖 �𝒦 𝜏𝜌(𝜖 = 𝛿) and 𝜏𝜌(𝛿 = 𝜖) �𝒦 𝛿 = 𝜖

The transformers 𝜏 and 𝜌 are said to witness the algebraizability of ℒ with

respect to the class 𝒦.

Proposition 4 ([10], Prop. 3.12). A logic ℒ is algebraizable if and only if there is a class

𝒦 of algebras and there are structural transformers 𝜏 , 𝜌 such that conditions (ALG1)

and (ALG4) are satisfied; or, equivalently, conditions (ALG2) and (ALG3).

In the next theorem we will show that although a logic ℒ can be algebraizable

with different sets of defining equations, equivalence formulas and classes of algebras, its
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algebraizations are in a certain sense the same, and we will use this fact to choose one

among all classes of algebras 𝒦 such that ℒ is algebraizable with respect to it.

Theorem 6 ([10], Thm. 3.17). Let ℒ is algebraizable logic with respect to a class 𝒦, with

defining equations E(x) and equivalence formulas ∆(x , y). The logic ℒ′ is algebraizable

with respect to a class 𝒦′, with defining equations E ′(x) and equivalence formulas ∆′(x , y)

if and only if the following conditions are satisfied:

1. �𝒦 = �𝒦′ .

2. ∆(x , y) ⊣⊢ℒ ∆′(x , y).

3. E(x) �𝒦 E ′(x) and E ′(x) �𝒦 E(x).

Definition 40 ([10], Def. 3.21). Let ℒ be an algebraizable logic. Its equivalent alge-

braic semantics is the largest class of algebras 𝒦 such that ℒ is algebraizable with

respect to 𝒦.

Given an algebraizable logic ℒ, we use the notation Alg*(ℒ) to denote its

equivalent algebraic semantics.

Definition 39 allows us to establish algebraizability of a logic only with prior

knowledge of the class 𝒦 and of the transformers. There is also syntactic criterion that

allows checking whether a given pair of transformers witnesses the algebraizability of

a given logic by just looking at their behaviour regarding the consequence relation of

the logic. Such a criterion is sometimes qualified as an intrinsic characterization of

algebraizability, but in fact it is only partially so, as it still depends on knowledge of the

transformers. This is content of the next theorem.

Theorem 7 ([10], Thm. 3.19). A logic ℒ is algebraizable if and only if there are

equations E(x) ⊆ Eq and formulas ∆(x , y) ⊆ Fm, such that ℒ satisfies the following five

conditions:

(R) ⊢ℒ ∆(x , x)
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(Sym) ∆(x , y) ⊢ℒ ∆(y, x)

(Trans) ∆(x , y) ∪∆(y, z) ⊢ℒ ∆(x , z)

(Re)
n⋃︁

i=1

∆(xi , yi) ⊢ℒ ∆(𝜆 x1 . . . xn, 𝜆 y1 . . . yn) for all 𝜆 ∈ L, with n = ar𝜆

(ALG3) x ⊣⊢ℒ ∆(E(x))

The five conditions above can be replaced by the conditions below:

(Ref) ⊢ℒ ∆(x , x)

(MP) x ,∆(x , y) ⊢ℒ y

(Alg) x ⊣⊢ℒ ∆(E(x))

(Cong) for each n-ary connective 𝜆,
n⋃︁

i=1

∆(xi , yi) ⊢ℒ ∆(𝜆(x1, . . . , xn), 𝜆(y1, . . . , yn)).

The algebraizability of a large number of logics has been shown in the literature

by using Theorem 7, either directly or through the next straightforward application,

which settles the issue of the algebraizability of extensions, fragments and expansions:

Proposition 5 ([10], Prop. 3.31). Let ℒ be an algebraizable logic with respect to 𝒦

with transformers 𝜏 , 𝜌.

1. Every axiomatic extension ℒ′ of ℒ is is algebraizable as well, with respect to a

subclass 𝒦′ of 𝒦 and with the same transformers.

2. If L′ is a fragment of the language of ℒ such that 𝜏x ⊆ EqL′ and 𝜌(x = y) ⊆ FmL′ ,

then ℒ′ := ℒ � L′, the L′-fragment of ℒ, is algebraizable with respect to the class

𝒦 � L′ and with the same transformers.

3. If L′ is an expansion of ℒ such that ⊢ℒ′ satisfies condition (Re) for the additional

connectives, then ℒ′ is algebraizable, with the same transformers.

Finally, there is a simple algorithm for converting any axiomatization of ℒ into

a basis for the quasi-equations of its unique equivalent algebraic semantics.

Theorem 8 ([2], Thm. 2.17). Let ℒ be a logic given be a set of axioms Ax and a set of

inference rules Ru. Assume ℒ is algebraizable with equivalence formulas ∆ and defining
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equations 𝛿 = 𝜖. Then the unique equivalent quasi-variety semantics for ℒ is axiomatized

by the following equations

(i) 𝛿(𝛼) = 𝜖(𝛼) for each 𝛼 ∈ Ax.

(ii) 𝛿(p∆p) = 𝜖(p∆p).

together with the following quasi-equations

(iii) 𝛿(𝛽0) = 𝜖(𝛽0) ∧ . . . ∧ 𝛿(𝛽n−1) = 𝜖(𝛽n−1)→ 𝛿(𝛼) = 𝜖(𝛼), for each ⟨{𝛽0, . . . , 𝛽n−1, 𝛼⟩ ∈

Ru.

(iv) 𝛿(p∆q) = 𝜖(p∆q)→ p = q.

For more details about this theorem and the notations involved, we suggest the

book [2].
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3 Quasi-Nelson algebras and Nuclei

In this chapter we shall consider algebras that result from adding a modal-

like operator subreducts of Heyting algebras; such operators are known as nuclei (or

modal operators). We will consider the following two different, but essentially equivalent

definitions, for a nucleus, which depend on what other operations are available in the

algebra.

Definition 41 ([23], Def. 2.5). Let A be an algebra having a reduct ⟨A; ∧, 0⟩ that is

a (meet-) semilattice with order ≤ and minimum 0. We shall say that an operation

2 : A→ A is a nucleus on A if the following equations are satisfied:

(i) x ≤ 2x = 22x .

(ii) 2(x ∧ y) = 2x ∧ 2y.

(iii) 20 = 0.

Remark 11. The equations of Definition 41 entail that, if the order ≤ has a maximum

element 1, then 21 = 1; so, 2 is indeed a modal-like operator in that it preserves all

finite meets.

Definition 42 ([23], Def. 2.6). Given an algebra having a bounded Hilbert algebra

reduct ⟨H ; →, 0, 1⟩, we say that an operation 2 : H → H is a nucleus on H if:

(i) x ≤ 2x = 22x .

(ii) 2(x → y) = 2x → 2y.

(iii) 20 = 0.
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Definition 43 ([25], Def. 4.1). An algebra A = ⟨A; ∧,∨,→,∼, 0, 1⟩ of type ⟨2, 2, 2, 1, 0, 0⟩

is called a quasi-Nelson algebra if the following hold.

(QN1) The reduct ⟨A; ∧,∨, 0, 1⟩ is a bounded distributive lattice with order ≤.

(QN2) The relation ⪯ on A defined for all a, b ∈ A by a ⪯ b iff a → b = 1 is a quasiorder

on A.

(QN3) The relation ≡ := ⪯ ∩ (⪯)−1 is a congruence on the reduct ⟨A; ∧,∨,→, 0, 1⟩

and the quotient algebra A+ = ⟨A; ∧,∨,→, 0, 1⟩/≡ is a Heyting algebra.

(QN4) For all a, b ∈ A, it holds that ∼(a → b)≡∼∼(a ∧ ∼ b).

(QN5) For all a, b ∈ A, it holds that a ≤ b iff a ⪯ b and ∼ b ⪯ ∼ a.

(QN6) For all a, b ∈ A,

(QN6.1) ∼(∼ a → ∼ b)≡∼ a → ∼ b.

(QN6.2) ∼(a ∨ b)≡∼ a ∧ ∼ b.

(QN6.3) ∼∼ a ∧ ∼∼ b ≡∼(a ∧ b).

(QN6.4) ∼ a ≡∼∼∼ a.

(QN6.5) a ⪯ ∼∼ a.

(QN6.6) a ∧ ∼ a ⪯ 0.

An alternative language in which quasi-Nelson algebras have been considered

is {∧,∨,→, 0, 1}, in which the residuated implication ⇒ (in this context known as the

strong implication) is replaced by the weak implication →, defining: x ⇒ y := (x → y) ∧

(∼ y → ∼ x). In turn, the weak implication is definable via the strong one by the term

x → y := x ⇒ (x ⇒ y). Based on these equivalences, and depending on convenience,

we can therefore employ the strong or weak implication to express the properties of

quasi-Nelson algebras we are interested in.

A fundamental result on quasi-Nelson algebras (and some of their subreducts) is

the twist representation, which we now proceed to introduce.
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Definition 44 ([23], Def. 2.9). Let H = ⟨H ; ∧,∨,→,2, 0, 1⟩ be a Heyting algebra of

type ⟨2, 2, 2, 1, 0, 0⟩ with a nucleus. Define the algebra H◁▷ = ⟨H ◁▷; ∧,∨, *,⇒, 0, 1⟩ with

universe:

H ◁▷ := {⟨a1, a2⟩ ∈ H × H ; a2 = 2a2, a1 ∧ a2 = 0}

and operations given, for all ⟨a1, a2⟩, ⟨b1, b2⟩ ∈ H × H , by:

0 := ⟨0, 1⟩

1 := ⟨1, 0⟩

⟨a1, a2⟩ * ⟨b1, b2⟩ := ⟨a1 ∧ b1, (a1 → b2) ∧ (b1 → a2)⟩

⟨a1, a2⟩ ∧ ⟨b1, b2⟩ := ⟨a1 ∧ b1,2(a2 ∨ b2)⟩

⟨a1, a2⟩ ∨ ⟨b1, b2⟩ := ⟨a1 ∨ b1, a2 ∧ b2⟩

⟨a1, a2⟩ ⇒ ⟨b1, b2⟩ := ⟨(a1 → b1) ∧ (b2 → a2),2a1 ∧ b2⟩

A quasi-Nelson twist-algebra over H is any subalgebra A ≤ H◁▷ satisfying 𝜋1[A] = H .

Remark 12 ([23]). Every quasi-Nelson twist-algebra is a quasi-Nelson algebra on which

the negation is given by ∼ x := x ⇒ 0 and the weak implication by x → y := x ⇒ (x ⇒ y).

Based on the above remark, we have

⎧⎪⎨⎪⎩ ∼⟨a1, a2⟩ = ⟨a2,2a1⟩

⟨a1, a2⟩ → ⟨b1, b2⟩ = ⟨a1 → b1,2a1 ∧ b2⟩

Given a quasi-Nelson algebra A = ⟨A; ∧,∨, *,⇒, 0, 1⟩, we can define the relation

≡ as:

a ≡ b iff a → b = b → a = 1; ∀ a, b ∈ A

This relation ≡ is compatible with the operations ⟨∧,∨, *,→⟩, though not

necessarily with ⇒ and ∼, giving us a quotient ⟨A/≡; ∧,∨, *,→, 0, 1⟩. Since a ≡ b
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entails ∼∼ a ≡∼∼ b for all a, b ∈ A, one can enrich the quotient aforementioned with a

well-defined operation, given by 2[a] := [∼∼ a] for each class [a] ∈ A/≡, which turns

out to be a nucleus. Letting A◁▷ := ⟨A/≡; ∧,∨,→,2, 0, 1⟩, we have a Heyting algebra

with a nucleus and we can construct the twist-algebra (A◁▷)
◁▷ as prescribed by Definition

44, obtaining the followings results.

Theorem 9 ([23], Thm. 2.10). Every quasi-Nelson algebra A embeds into the quasi-

Nelson twist-algebra (A◁▷)
◁▷ with the map 𝜄 given by 𝜄(a) = ⟨[a], [∼ a]⟩ for all a ∈ A.

Proposition 6 ([23], Prop. 2.11). Every quasi-Nelson algebra satisfies the following

identity: x ⇒ y = (x → y) * ((x → y)→ (∼ y → ∼ x)).

The proposition above is especially significant in the present context because

it entails that the {*,⇒,∼}-fragment of quasi-Nelson logic is term equivalent to the

{*,→,∼}-fragment. This fact will be used in the chapter on the fragments of quasi-Nelson

logic.
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4 QN4-lattices and their logic

The class of quasi-N4-lattices (QN4-lattices) was introduced as a common gene-

ralization of quasi-Nelson algebras (QNA) and N4-lattices, in such a way that N4-lattices

are precisely the QN4-lattices satisfying the double negation law (∼∼ x = x) and QNA

are the QN4-lattices satisfying (x ∧ ∼ x) → y = ((x ∧ ∼ x) → y) → ((x ∧ ∼ x) → y),

the explosive law. For more details about QN4-lattices, see [22].

In this chapter we introduce, via a Hilbert-style presentation, a logic (ℒQN4)

whose algebraic semantics is a class of algebras that we show to be term-equivalent to

QN4-lattices. The result is obtained by showing that the calculus introduced by us is

algebraizable in the sense of Blok and Pigozzi, and its equivalent algebraic semantics is

term-equivalent to the class of QN4-lattices.

4.1 QN4-lattices

In this section we recall two equivalent presentations of quasi-N4-lattices; these

will be used to establish the equivalence between the two alternative algebraic semantics

for the logic ℒQN4, which is introduced in the next section.

We shall refer to an algebra B = ⟨B; ∧,∨,→,2⟩ as to a nuclear Brouwerian

algebra, where 2 is a nucleus in the sense of Definition 41.

Definition 45 ([22], Def. 2.2). Let B = ⟨B; ∧,∨,→,2⟩ be a nuclear Brouwerian algebra.

The algebra B◁▷ = ⟨B × B; ∧,∨,→,∼⟩ is defined as follows. For all ⟨a1, a2⟩, ⟨b1, b2⟩ ∈
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B × B, we have:

∼⟨a1, a2⟩ = ⟨a2,2a1⟩

⟨a1, a2⟩ ∧ ⟨b1, b2⟩ = ⟨a1 ∧ b1,2(a2 ∨ b2)⟩

⟨a1, a2⟩ ∨ ⟨b1, b2⟩ = ⟨a1 ∨ b1, a2 ∧ b2⟩

⟨a1, a2⟩ → ⟨b1, b2⟩ = ⟨a1 → b1,2a1 ∧ b2⟩

A quasi-N4 twist-structure A over B is a subalgebra of B◁▷ satisfying the

following properties: 𝜋1[A] = B and 2a2 = a2 for all ⟨a1, a2⟩ ∈ A.

Given an algebra A having an operation → and elements a, b ∈ A, we shall

abbreviate |a| := a → a, and define the relations ≡ and ⪯ as follows. We let a ⪯ b iff

a → b = |a → b|, and ≡ := (⪯ ∩(⪯)−1). Thus one has a ≡ b iff (a ⪯ b and b ⪯ a).

Definition 46 ([22], Def. 3.2). A quasi-N4-lattice (QN4-lattice) is an algebra A =

⟨A; ∧,∨,→,∼⟩ of type ⟨2, 2, 2, 1⟩ satisfying the following properties:

(QN4a) The reduct ⟨A; ∧,∨⟩ is a distributive lattice with lattice order ≤.

(QN4b) The relation ≡ := (⪯ ∩ (⪯)−1) is a congruence on the reduct ⟨A; ∧,∨,→⟩

and the quotient B(A) = ⟨A; ∧,∨,→⟩/≡ is a Brouwerian algebra. The operator 2

given by 2[a] := (∼∼ a/≡) for all a ∈ A is a nucleus, so the algebra ⟨B(A),2⟩ is a

nuclear Brouwerian algebra.

(QN4c) For all a, b ∈ A, it holds that a ≤ b iff a ⪯ b and ∼ b ⪯ ∼ a.

(QN4d) For all a, b ∈ A, it holds that ∼(a → b)≡∼∼(a ∧ ∼ b).

(QN4e) For all a, b ∈ A,

(QN4e.1) a ≤ ∼∼ a.

(QN4e.2) ∼ a = ∼∼∼ a.

(QN4e.3) ∼(a ∨ b) = ∼ a ∧ ∼ b.

(QN4e.4) ∼∼ a ∧ ∼∼ b = ∼∼(a ∧ b).
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The preceding definition is a straightforward generalization of Odintsov’s [19]

definition of N4-lattices; indeed, as observed in [22, Proposition 3.8], a quasi-N4-lattice A

is an N4-lattice if and only if A it is involutive, that is, ∼∼ a ≤ a for all a ∈ A. Similarly,

a quasi-Nelson algebra may be defined as a quasi-N4-lattice A that satisfies the explosive

equality, a ∧ ∼ a ⪯ b, for all a, b ∈ A.

Theorem 10 ([22], Thm. 3.3). Every quasi-N4-lattice A is isomorphic to a twist-structure

over ⟨B(A),2⟩ by the map 𝜄 : A→ (A/≡)× (A/≡) given by 𝜄(a) := ⟨a/≡,∼ a/≡⟩ for

all a ∈ A.

In the proposition below we see that the non-equational presentation for QN4-

lattices given in Definition 46 can be replaced with an equational one, entailing that

QN4-lattices form a variety of algebras.

Proposition 7 ([22], Prop. 3.7). Items (QN4b) and (QN4c) in Definition 46 can be

equivalently replaced by the following equations:

1. |x| → y = y.

2. (x ∧ y)→ x = |(x ∧ y)→ x|.

3. (x ∧ y)→ z = x → (y → z).

4. (x ⇔ y)→ x = (x ⇔ y)→ y.

5. (x ∨ y)→ z = (x → z) ∧ (y → z).

6. x → (y ∧ z) = (x → y) ∧ (x → z).

7. (x → y) ∧ (y → z) ⪯ x → z .

8. x → y ⪯ x → (y ∨ z).

9. x → (y → z) = (x → y)→ (x → z).

10. x → y ⪯ ∼∼ x → ∼∼ y.

32



4.2 A Hilbert-style calculus

In this section we introduce a Hilbert-style calculus that determines a logic,

henceforth denoted by ℒQN4. Our aim is to show that ℒQN4 is algebraizable, and that

its equivalent algebraic semantics is term-equivalent to the class of QN4-lattices.

The Hilbert-system for ℒQN4 consists of the following axiom schemes together

with the single inference rule of modus ponens (MP): 𝛼, 𝛼→ 𝛽 ⊢ 𝛽.

Ax1 𝛼→ (𝛽 → 𝛼)

Ax2 (𝛼→ (𝛽 → 𝛾))→ ((𝛼→ 𝛽)→ (𝛼→ 𝛾))

Ax3 (𝛼 ∧ 𝛽)→ 𝛼

Ax4 (𝛼 ∧ 𝛽)→ 𝛽

Ax5 (𝛼→ 𝛽)→ ((𝛼→ 𝛾)→ (𝛼→ (𝛽 ∧ 𝛾)))

Ax6 𝛼→ (𝛼 ∨ 𝛽)

Ax7 𝛽 → (𝛼 ∨ 𝛽)

Ax8 (𝛼→ 𝛾)→ ((𝛽 → 𝛾)→ ((𝛼 ∨ 𝛽)→ 𝛾))

Ax9 ∼(𝛼 ∨ 𝛽)↔ (∼𝛼 ∧ ∼ 𝛽)

Ax10 ∼(𝛼→ 𝛽)↔ ∼∼(𝛼 ∧ ∼ 𝛽)

Ax11 ∼(𝛼 ∧ (𝛽 ∧ 𝛾))↔ ∼((𝛼 ∧ 𝛽) ∧ 𝛾)

Ax12 ∼(𝛼 ∧ (𝛽 ∨ 𝛾))↔ ∼((𝛼 ∧ 𝛽) ∨ (𝛼 ∧ 𝛾))

Ax13 ∼(𝛼 ∨ (𝛽 ∧ 𝛾))↔ ∼((𝛼 ∨ 𝛽) ∧ (𝛼 ∨ 𝛾))

Ax14 ∼∼(𝛼 ∧ 𝛽)↔ (∼∼𝛼 ∧ ∼∼ 𝛽)

Ax15 𝛼→ ∼∼𝛼

Ax16 𝛼→ (∼𝛼→ ∼(𝛼→ 𝛼))

Ax17 (𝛼→ 𝛽)→ (∼∼𝛼→ ∼∼ 𝛽)

Ax18 ∼𝛼→ ∼(𝛼 ∧ 𝛽)
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Ax19 ∼(𝛼 ∧ 𝛽)→ ∼(𝛽 ∧ 𝛼)

Ax20 (∼𝛼→ ∼ 𝛽)→ (∼(𝛼 ∧ 𝛽)→ ∼ 𝛽)

Ax21 (∼𝛼→ ∼ 𝛽)→ ((∼ 𝛾 → ∼ 𝜃)→ (∼(𝛼 ∧ 𝛾)→ ∼(𝛽 ∧ 𝜃)))

Ax22 ∼∼∼𝛼→ ∼𝛼

It should be noted that the Deduction Theorem holds for ℒQN4.

4.3 ℒQN4 is BP-Algebraizable

In this section we prove that the calculus introduced in the previous section

is algebraizable in sense of Blok and Pigozzi. Using this result, we will axiomatize the

equivalent algebraic semantics of ℒQN4 via the algorithm in Theorem 8 and show that it

is term-equivalent to the class of QN4-lattices.

Theorem 11. ℒQN4 is BP-algebraizable with E(𝛼) := {𝛼 = 𝛼 → 𝛼} and ∆(𝛼, 𝛽) :=

{𝛼→ 𝛽, 𝛽 → 𝛼,∼𝛼→ ∼ 𝛽,∼ 𝛽 → ∼𝛼}.

Proof. By Theorem 7, to prove (Ref), it is necessary to show that ⊢ℒQN4 {𝛼→ 𝛼,∼𝛼→

∼𝛼}, and it is Proposition 1. (MP): 𝛼, {𝛼→ 𝛽, 𝛽 → 𝛼,∼𝛼→ ∼ 𝛽,∼ 𝛽 → ∼𝛼} ⊢ℒQN4 𝛽

is a straightforward consequence of modus ponens. As to (Alg), it suffices to prove that

𝛼 ⊣⊢ℒQN4 {𝛼 → (𝛼 → 𝛼), (𝛼 → 𝛼) → 𝛼,∼𝛼 → ∼(𝛼 → 𝛼),∼(𝛼 → 𝛼) → ∼𝛼}. From

right to left, thanks to Proposition 1 and using MP, we infer the desired result. From left

to right, we will prove that: (i) 𝛼 ⊢ℒQN4 𝛼→ (𝛼→ 𝛼), we have it by instantiating Ax1;

(ii) 𝛼 ⊢ℒQN4 (𝛼 → 𝛼) → 𝛼, follows from Ax1 and MP; (iii) 𝛼 ⊢ℒQN4 ∼𝛼 → ∼(𝛼 → 𝛼)

is logical consequence of Ax16 and modus ponens; (iv) 𝛼 ⊢ℒQN4 ∼(𝛼→ 𝛼)→ ∼𝛼, we

have:

1. 𝛼 Premise
2. ∼(𝛼→ 𝛼)→ ∼∼(𝛼 ∧ ∼𝛼) Ax10 (→)
3. ∼∼(𝛼 ∧ ∼𝛼)→ (∼∼𝛼 ∧ ∼∼∼𝛼) Ax14 (→)
4. ∼(𝛼→ 𝛼)→ (∼∼𝛼 ∧ ∼∼∼𝛼) Lemma 4, 2, 3
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5. (∼∼𝛼 ∧ ∼∼∼𝛼)→ ∼∼∼𝛼 Ax4
6. ∼(𝛼→ 𝛼)→ ∼∼∼𝛼 Lemma 4, 4, 5
7. ∼∼∼𝛼→ ∼𝛼 Ax22
8. ∼(𝛼→ 𝛼)→ ∼𝛼 Lemma 4, 6, 7

As to (Cong), we need to prove for each connective 𝜆 ∈ {∼,∧,∨,→}.

For (∼), we need to prove that:

{𝛼→ 𝛽, 𝛽 → 𝛼,∼𝛼→ ∼ 𝛽,∼ 𝛽 → ∼𝛼} ⊢ℒQN4 ∼𝛼→ ∼ 𝛽 (4.1)

{𝛼→ 𝛽, 𝛽 → 𝛼,∼𝛼→ ∼ 𝛽,∼ 𝛽 → ∼𝛼} ⊢ℒQN4 ∼ 𝛽 → ∼𝛼 (4.2)

{𝛼→ 𝛽, 𝛽 → 𝛼,∼𝛼→ ∼ 𝛽,∼ 𝛽 → ∼𝛼} ⊢ℒQN4 ∼∼𝛼→ ∼∼ 𝛽 (4.3)

{𝛼→ 𝛽, 𝛽 → 𝛼,∼𝛼→ ∼ 𝛽,∼ 𝛽 → ∼𝛼} ⊢ℒQN4 ∼∼ 𝛽 → ∼∼𝛼 (4.4)

In (4.1) and (4.2), the conclusion follows directly from the premises. Also, in

(4.3) and (4.4), the conclusion can be inferred from Ax17 and MP.

Now consider the following sets, Γ1 = {𝛼1 → 𝛽1, 𝛽1 → 𝛼1,∼𝛼1 → ∼ 𝛽1,∼ 𝛽1 →

∼𝛼1} and Γ2 = {𝛼2 → 𝛽2, 𝛽2 → 𝛼2,∼𝛼2 → ∼ 𝛽2,∼ 𝛽2 → ∼𝛼2}.

For (∧), we need to prove that:

Γ1 ∪ Γ2 ⊢ (𝛼1 ∧ 𝛼2)→ (𝛽1 ∧ 𝛽2) (4.5)

Γ1 ∪ Γ2 ⊢ (𝛽1 ∧ 𝛽2)→ (𝛼1 ∧ 𝛼2) (4.6)

Γ1 ∪ Γ2 ⊢ ∼(𝛼1 ∧ 𝛼2)→ ∼(𝛽1 ∧ 𝛽2) (4.7)

Γ1 ∪ Γ2 ⊢ ∼(𝛽1 ∧ 𝛽2)→ ∼(𝛼1 ∧ 𝛼2) (4.8)

The item (4.6), follows the same line of reasoning from (4.5), so we will only

show item (4.5).

1. 𝛼1 → 𝛽1 Premise
2. 𝛼2 → 𝛽2 Premise
3. (𝛼1 ∧ 𝛼2)→ 𝛼1 Ax3
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4. (𝛼1 ∧ 𝛼2)→ 𝛽1 Lemma 4, 1, 3
5. (𝛼1 ∧ 𝛼2)→ 𝛼2 Ax4
6. (𝛼1 ∧ 𝛼2)→ 𝛽2 Lemma 4, 2, 5
7. ((𝛼1 ∧ 𝛼2)→ 𝛽1)→ (((𝛼1 ∧ 𝛼2)→ 𝛽2)→ ((𝛼1 ∧ 𝛼2)→ (𝛽1 ∧ 𝛽2))) Ax5
8. ((𝛼1 ∧ 𝛼2)→ 𝛽2)→ ((𝛼1 ∧ 𝛼2)→ (𝛽1 ∧ 𝛽2)) MP, 4, 7
9. (𝛼1 ∧ 𝛼2)→ (𝛽1 ∧ 𝛽2) MP, 6, 8

The derivation of (4.7) and (4.8) are straightforward and make use of Ax21 and

MP.

For (∨), we need to prove that:

Γ1 ∪ Γ2 ⊢ (𝛼1 ∨ 𝛼2)→ (𝛽1 ∨ 𝛽2) (4.9)

Γ1 ∪ Γ2 ⊢ (𝛽1 ∨ 𝛽2)→ (𝛼1 ∨ 𝛼2) (4.10)

Γ1 ∪ Γ2 ⊢ ∼(𝛼1 ∨ 𝛼2)→ ∼(𝛽1 ∨ 𝛽2) (4.11)

Γ1 ∪ Γ2 ⊢ ∼(𝛽1 ∨ 𝛽2)→ ∼(𝛼1 ∨ 𝛼2) (4.12)

For (4.9) and (4.10), we use Ax6, Ax7, Ax8 and MP for inferring the conclusions.

The item (4.12), follows the same line of reasoning from (4.11), so we will only show item

(4.11).

1. ∼𝛼1 → ∼ 𝛽1 Premise
2. ∼𝛼2 → ∼ 𝛽2 Premise

3.
𝜙⏞  ⏟  

(∼𝛼1 ∧ ∼𝛼2)→ ∼𝛼1 Ax3
4. (∼𝛼1 ∧ ∼𝛼2)→ ∼ 𝛽1 Lemma 4, 1, 3
5. (∼𝛼1 ∧ ∼𝛼2)→ ∼𝛼2 Ax4
6. (∼𝛼1 ∧ ∼𝛼2)→ ∼ 𝛽2 Lemma 4, 2, 5
7. (𝜙→ ∼ 𝛽1)→ ((𝜙→ ∼ 𝛽2)→ (𝜙→ (∼ 𝛽1 ∧ ∼ 𝛽2))) Ax5
8. (𝜙→ ∼ 𝛽2)→ (𝜙→ (∼ 𝛽1 ∧ ∼ 𝛽2)) MP, 4, 7
9. (∼𝛼1 ∧ ∼𝛼2)→ (∼ 𝛽1 ∧ ∼ 𝛽2) MP, 6, 8
10. ∼(𝛼1 ∨ 𝛼2)→ (∼𝛼1 ∧ ∼𝛼2) Ax9 (→)
11. ∼(𝛼1 ∨ 𝛼2)→ (∼ 𝛽1 ∧ ∼ 𝛽2) Lemma 4, 9, 10
12. (∼ 𝛽1 ∧ ∼ 𝛽2)→ ∼(𝛽1 ∨ 𝛽2) Ax9 (←)
13. ∼(𝛼1 ∨ 𝛼2)→ ∼(𝛽1 ∨ 𝛽2) Lemma 4, 10, 11
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For (→), we need to prove that:

Γ1 ∪ Γ2 ⊢ (𝛼1 → 𝛼2)→ (𝛽1 → 𝛽2) (4.13)

Γ1 ∪ Γ2 ⊢ (𝛽1 → 𝛽2)→ (𝛼1 → 𝛼2) (4.14)

Γ1 ∪ Γ2 ⊢ ∼(𝛼1 → 𝛼2)→ ∼(𝛽1 → 𝛽2) (4.15)

Γ1 ∪ Γ2 ⊢ ∼(𝛽1 → 𝛽2)→ ∼(𝛼1 → 𝛼2) (4.16)

Lemma 4 is used in (4.13) and (4.14) for inferring the conclusions. The item

(4.16), follows the same line of reasoning from (4.15), so we will only show item (4.15).

1. 𝛼1 → 𝛽1 Premise
2. ∼𝛼2 → ∼ 𝛽2 Premise
3. (𝛼1 → 𝛽1)→ (∼∼𝛼1 → ∼∼ 𝛽1) Ax17
4. ∼∼𝛼1 → ∼∼ 𝛽1 MP, 1, 3
5. (∼∼𝛼1 ∧ ∼∼∼𝛼2)→ ∼∼𝛼1 Ax3

6.
𝜙⏞  ⏟  

(∼∼𝛼1 ∧ ∼∼∼𝛼2)→ ∼∼ 𝛽1 Lemma 4, 4, 5
7. (∼𝛼2 → ∼ 𝛽2)→ (∼∼∼𝛼2 → ∼∼∼ 𝛽2) Ax17
8. ∼∼∼𝛼2 → ∼∼∼ 𝛽2 MP, 2, 7
9. (∼∼𝛼1 ∧ ∼∼∼𝛼2)→ ∼∼∼𝛼2 Ax4

10.
𝜓⏞  ⏟  

(∼∼𝛼1 ∧ ∼∼∼𝛼2)→ ∼∼∼ 𝛽2 Lemma 4, 8, 9
11. 𝜙→ (𝜓 → ((∼∼𝛼1 ∧ ∼∼∼𝛼2)→ (∼∼ 𝛽1 ∧ ∼∼∼ 𝛽2))) Ax5
12. 𝜓 → ((∼∼𝛼1 ∧ ∼∼∼𝛼2)→ (∼∼ 𝛽1 ∧ ∼∼∼ 𝛽2)) MP, 6, 11
13. (∼∼𝛼1 ∧ ∼∼∼𝛼2)→ (∼∼ 𝛽1 ∧ ∼∼∼ 𝛽2) MP, 10, 12
14. ∼∼(𝛼1 ∧ ∼𝛼2)→ (∼∼𝛼1 ∧ ∼∼∼𝛼2) Ax14 (→)
15. ∼∼(𝛼1 ∧ ∼𝛼2)→ (∼∼ 𝛽1 ∧ ∼∼∼ 𝛽2) Lemma 4, 13, 14
16. (∼∼ 𝛽1 ∧ ∼∼∼ 𝛽2)→ ∼∼(𝛽1 ∧ ∼ 𝛽2) Ax14 (←)
17. ∼∼(𝛼1 ∧ ∼𝛼2)→ ∼∼(𝛽1 ∧ ∼ 𝛽2) Lemma 4, 15, 16
18. ∼(𝛼1 → 𝛼2)→ ∼∼(𝛼1 ∧ ∼𝛼2) Ax10 (→)
19. ∼(𝛼1 → 𝛼2)→ ∼∼(𝛽1 ∧ ∼ 𝛽2) Lemma 4, 17, 18
20. ∼∼(𝛽1 ∧ ∼ 𝛽2)→ ∼(𝛽1 → 𝛽2) Ax10 (←)
21. ∼(𝛼1 → 𝛼2)→ ∼(𝛽1 → 𝛽2) Lemma 4, 19, 20

Having proved that our calculus is algebraizable in the sense Blok and Pigozzi,
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we have a corresponding equivalent algebraic semantics Alg*(ℒQN4), which satisfies the

following equations and quasi-equations:

1. E(p) for each p ∈ Ax.

2. E(∆(p, p)).

3. E(p) and E(p → q) implies E(q).

4. E(∆(p, q)) implies p = q.

.

4.4 Alg*(ℒQN4) = 𝒱QN4

In order to prove that the class of algebras introduced in Alg*(ℒQN4) is term-

equivalent to the class of QN4-lattices, that is, Alg*(ℒQN4) = 𝒱QN4.

Proposition 8. Alg*(ℒQN4) ⊆ 𝒱QN4.

Proof. For proving QN4a, we need to show that the idempotent, commutative, absorp-

tion, associative and distributive laws hold for every A ∈ Alg*(ℒQN4).

1. Idempotent laws.

For the law x ∧ x = x, we need to have that (x ∧ x) → x = |(x ∧ x) → x|,

x → (x ∧ x) = |x → (x ∧ x)|, ∼(x ∧ x) → ∼ x = | ∼(x ∧ x) → ∼ x| and

∼ x → ∼(x ∧ x) = | ∼ x → ∼(x ∧ x)|. In order to have these four equations in the

algebra, we must prove in the logic the following four axioms:

a) (𝛼 ∧ 𝛼)→ 𝛼, this is an instantiation of Ax3.

b) 𝛼→ (𝛼 ∧ 𝛼), shown using Ax5, Proposition 1 and MP.

c) ∼(𝛼 ∧ 𝛼)→ ∼𝛼, shown using Ax20, Proposition 1 and MP.

d) ∼𝛼→ ∼(𝛼 ∧ 𝛼), this is an instantiation of Ax18.

The same idea applies to x ∨ x = x .
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2. Commutative laws

For the law x ∧ y = y ∧ x , we have:

a) (𝛼 ∧ 𝛽)→ (𝛽 ∧ 𝛼)

1. ((𝛼 ∧ 𝛽)→ 𝛽)→ (((𝛼 ∧ 𝛽)→ 𝛼)→ ((𝛼 ∧ 𝛽)→ (𝛽 ∧ 𝛼))) Ax5
2. (𝛼 ∧ 𝛽)→ 𝛽 Ax4
3. ((𝛼 ∧ 𝛽)→ 𝛼)→ ((𝛼 ∧ 𝛽)→ (𝛽 ∧ 𝛼)) MP, 1, 2
4. (𝛼 ∧ 𝛽)→ 𝛼 Ax3
5. (𝛼 ∧ 𝛽)→ (𝛽 ∧ 𝛼) MP, 3, 4

b) (𝛽 ∧ 𝛼)→ (𝛼 ∧ 𝛽), this is an instantiation of previous item.

c) ∼(𝛼 ∧ 𝛽)→ ∼(𝛽 ∧ 𝛼), this is Ax19.

d) ∼(𝛽 ∧ 𝛼)→ ∼(𝛼 ∧ 𝛽), this is an instantiation of Ax19.

The same idea applies to x ∨ y = y ∨ x .

3. Absorption laws.

For the law x ∧ (x ∨ y) = x , we have:

a) (𝛼 ∧ (𝛼 ∨ 𝛽))→ 𝛼, this is an instantiation of Ax3.

b) 𝛼→ (𝛼 ∧ (𝛼 ∨ 𝛽))

1. (𝛼→ 𝛼)→ ((𝛼→ (𝛼 ∨ 𝛽))→ (𝛼→ (𝛼 ∧ (𝛼 ∨ 𝛽)))) Ax5
2. 𝛼→ 𝛼 Proposition 1
3. (𝛼→ (𝛼 ∨ 𝛽))→ (𝛼→ (𝛼 ∧ (𝛼 ∨ 𝛽))) MP, 1, 2
4. 𝛼→ (𝛼 ∨ 𝛽) Ax6
5. 𝛼→ (𝛼 ∧ (𝛼 ∨ 𝛽)) MP, 3, 4

c) ∼(𝛼 ∧ (𝛼 ∨ 𝛽))→ ∼𝛼

1. ∼(𝛼 ∧ (𝛼 ∨ 𝛽))→ ∼((𝛼 ∧ 𝛼) ∨ (𝛼 ∧ 𝛽)) Ax12 (→)
2. ∼((𝛼 ∧ 𝛼) ∨ (𝛼 ∧ 𝛽))→ (∼(𝛼 ∧ 𝛼) ∧ ∼(𝛼 ∧ 𝛽)) Ax9 (→)
3. ∼(𝛼 ∧ (𝛼 ∨ 𝛽))→ (∼(𝛼 ∧ 𝛼) ∧ ∼(𝛼 ∧ 𝛽)) Lemma 4, 1, 2
4. (∼(𝛼 ∧ 𝛼) ∧ ∼(𝛼 ∧ 𝛽))→ ∼(𝛼 ∧ 𝛼) Ax3
5. ∼(𝛼 ∧ (𝛼 ∨ 𝛽))→ ∼(𝛼 ∧ 𝛼) Lemma 4, 3, 4
6. (∼𝛼→ ∼𝛼)→ (∼(𝛼 ∧ 𝛼)→ ∼𝛼) Ax20
7. ∼𝛼→ ∼𝛼 Proposition 1
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8. ∼(𝛼 ∧ 𝛼)→ ∼𝛼 MP, 6, 7
9. ∼(𝛼 ∧ (𝛼 ∨ 𝛽))→ ∼𝛼 Lemma 4, 5, 8

d) ∼𝛼→ ∼(𝛼 ∧ (𝛼 ∨ 𝛽)), this is an instantiation of Ax18.

The same idea applies to x ∨ (x ∧ y) = x .

4. Associative laws.

For the law x ∧ (y ∧ z) = (x ∧ y) ∧ z , we have:

a) (𝛼 ∧ (𝛽 ∧ 𝛾))→ ((𝛼 ∧ 𝛽) ∧ 𝛾)

1. ((𝛼 ∧ (𝛽 ∧ 𝛾))→ (𝛼 ∧ 𝛽))→ ((𝛼 ∧ (𝛽 ∧ 𝛾))→ 𝛾)→ ((𝛼 ∧ (𝛽 ∧ 𝛾))→ ((𝛼 ∧ 𝛽) ∧ 𝛾))) Ax5
2. (𝛼 ∧ (𝛽 ∧ 𝛾))→ 𝛼 Ax3
3. (𝛼 ∧ (𝛽 ∧ 𝛾))→ 𝛽 ∧ 𝛾 Ax4
4. (𝛽 ∧ 𝛾)→ 𝛽 Ax3
5. (𝛼 ∧ (𝛽 ∧ 𝛾))→ 𝛽 Lemma 4, 3, 4
6. ((𝛼 ∧ (𝛽 ∧ 𝛾))→ 𝛼)→ (((𝛼 ∧ (𝛽 ∧ 𝛾)→ 𝛽)→ (((𝛼 ∧ (𝛽 ∧ 𝛾))→ (𝛼 ∧ 𝛽))) Ax5
7. ((𝛼 ∧ (𝛽 ∧ 𝛾)→ 𝛽)→ (((𝛼 ∧ (𝛽 ∧ 𝛾))→ (𝛼 ∧ 𝛽)) MP, 2, 6
8. ((𝛼 ∧ (𝛽 ∧ 𝛾))→ (𝛼 ∧ 𝛽) MP, 5, 7
9. (𝛼 ∧ (𝛽 ∧ 𝛾))→ 𝛾)→ ((𝛼 ∧ (𝛽 ∧ 𝛾))→ ((𝛼 ∧ 𝛽) ∧ 𝛾)) MP, 1, 8
10. (𝛽 ∧ 𝛾)→ 𝛾 Ax4
11. (𝛼 ∧ (𝛽 ∧ 𝛾))→ 𝛾 Lemma 4, 3, 10
12. (𝛼 ∧ (𝛽 ∧ 𝛾))→ ((𝛼 ∧ 𝛽) ∧ 𝛾) MP, 9, 11

b) ((𝛼 ∧ 𝛽) ∧ 𝛾)→ (𝛼 ∧ (𝛽 ∧ 𝛾))

1. (((𝛼 ∧ 𝛽) ∧ 𝛾)→ 𝛼)→ (((𝛼 ∧ 𝛽) ∧ 𝛾)→ (𝛽 ∧ 𝛾))→ (((𝛼 ∧ 𝛽) ∧ 𝛾)→ (𝛼 ∧ (𝛽 ∧ 𝛾)))) Ax5
2. ((𝛼 ∧ 𝛽) ∧ 𝛾)→ (𝛼 ∧ 𝛽) Ax3
3. (𝛼 ∧ 𝛽)→ 𝛼 Ax3
4. ((𝛼 ∧ 𝛽) ∧ 𝛾)→ 𝛼 Lemma 4, 2, 3
5. ((𝛼 ∧ 𝛽) ∧ 𝛾)→ (𝛽 ∧ 𝛾))→ (((𝛼 ∧ 𝛽) ∧ 𝛾)→ (𝛼 ∧ (𝛽 ∧ 𝛾))) MP, 1, 4
6. ((𝛼 ∧ 𝛽) ∧ 𝛾)→ 𝛾 Ax4
7. (𝛼 ∧ 𝛽)→ 𝛽 Ax4
8. ((𝛼 ∧ 𝛽) ∧ 𝛾)→ 𝛽 Lemma 4, 2, 7
9. (((𝛼 ∧ 𝛽) ∧ 𝛾)→ 𝛽)→ (((𝛼 ∧ 𝛽) ∧ 𝛾)→ 𝛾)→ (((𝛼 ∧ 𝛽) ∧ 𝛾)→ (𝛽 ∧ 𝛾))) Ax5
10. ((𝛼 ∧ 𝛽) ∧ 𝛾)→ 𝛾)→ (((𝛼 ∧ 𝛽) ∧ 𝛾)→ (𝛽 ∧ 𝛾)) MP, 8, 9
11. ((𝛼 ∧ 𝛽) ∧ 𝛾)→ (𝛽 ∧ 𝛾) MP, 6, 10
12. ((𝛼 ∧ 𝛽) ∧ 𝛾)→ (𝛼 ∧ (𝛽 ∧ 𝛾)) MP 5, 11

c) ∼(𝛼 ∧ (𝛽 ∧ 𝛾))→ ∼((𝛼 ∧ 𝛽) ∧ 𝛾), this is Ax11 (→).

d) ∼((𝛼 ∧ 𝛽) ∧ 𝛾)→ ∼(𝛼 ∧ (𝛽 ∧ 𝛾)), this is Ax11 (←).

The same idea applies to x ∨ (y ∨ z) = (x ∨ y) ∨ z .
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5. Distributive laws.

Axioms Ax1-Ax8 of ℒQN4 are the axioms of the Positive Logic and it is known

that the distributive law holds in this logic. Distributive law and Ax11 give us the

distributivity in the lattice.

Clearly, QN4d is axiom 10, QN4e.1 is axiom 15, QN4e.3 is axiom 9 and

QN4e.4 is axiom 14. For QN4e.2, that is, ∼ a = ∼∼∼ a, we have that ∼∼∼ a ≤ ∼ a

by axiom 22. It remains to prove that ∼ a ≤ ∼∼∼ a, this is an instantiation of axiom 15.

Instead proving QN4b and QN4c, we can prove that Alg*(ℒQN4) satisfies the equations

of Proposition 7 and these proves are straightforward.

Proposition 9. 𝒱QN4 ⊆ Alg*(ℒQN4).

Proof. Let A ∈ QN4, and let a, b, c ∈ A be generic elements. By Theorem 10, we assume

that A is a twist-structure, and from now on we also denote a = ⟨a1, a2⟩, b = ⟨b1, b2⟩ and

c = ⟨c1, c2⟩. Note that, proving E(a) for a given element a is equivalent to showing that

𝜋1(a) = 1. We shall use this observation without further notice throughout the proof.

It is very easy to see that the twist-structure definitions, together with the

Brouwerian algebra properties, entail that 𝜋1(Axn) = 1 for 1 ≤ n ≤ 8. In the case of

E(a ↔ b), it is equivalent to prove that 𝜋1(a ↔ b) = 1, which in turn is equivalent to

proving 𝜋1(a) = 𝜋1(b), this is, a1 = b1. So,

• E(∼(a ∨ b)↔ (∼ a ∧ ∼ b))

On the one hand, 𝜋1[∼(a ∨ b)] = 𝜋1[∼(⟨a1, a2⟩ ∨ ⟨b1, b2⟩)] = 𝜋1[∼⟨a1 ∨ b1, a2 ∧

b2⟩] = 𝜋1[⟨a2 ∧ b2,2(a1 ∨ b1)⟩] = a2 ∧ b2.

On the other hand, 𝜋1[∼ a ∧ ∼ b] = 𝜋1[∼⟨a1, a2⟩ ∧ ∼⟨b1, b2⟩] = 𝜋1[⟨a2,2a1⟩ ∧

⟨b2,2b1⟩] = 𝜋1[⟨a2 ∧ b2,2(2a1 ∨ 2b1)⟩] = a2 ∧ b2.
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• E(∼(a → b)↔ ∼∼(a ∧ ∼ b))

On the one hand, 𝜋1[∼(a → b)] = 𝜋1[∼(⟨a1, a2⟩ → ⟨b1, b2⟩)] = 𝜋1[∼⟨a1 → b1,2a1 ∧

b2⟩] = 𝜋1[⟨2a1 ∧ b2,2(a1 → b1)⟩] = 2a1 ∧ b2.

On the other hand, 𝜋1[∼∼(a ∧ ∼ b)] = 𝜋1[∼∼(⟨a1, a2⟩ ∧ ∼⟨b1, b2⟩)] = 𝜋1[∼∼(⟨a1, a2⟩ ∧

⟨b2,2b1⟩)] = 𝜋1[∼∼⟨a1 ∧ b2,2(a2 ∨ 2b1)⟩] = 𝜋1[∼⟨2(a2 ∨ 2b1),2(a1 ∧ b2)⟩] =

𝜋1[⟨2(a1 ∧ b2),2(2(a2 ∨ 2b1))⟩] = 2(a1 ∧ b2) = 2a1 ∧ 2b2 = 2a1 ∧ b2.

• E(∼(a ∧ (b ∧ c))↔ ∼((a ∧ b) ∧ c))

On the one hand, 𝜋1[∼(a ∧ (b ∧ c))] = 𝜋1[∼(⟨a1, a2⟩ ∧ (⟨b1, b2⟩ ∧ ⟨c1, c2⟩))] =

𝜋1[∼(⟨a1, a2⟩ ∧ ⟨b1 ∧ c1,2(b2 ∨ c2)⟩)] = 𝜋1[∼⟨a1 ∧ (b1 ∧ c1),2(a2 ∨ 2(b2 ∨ c2))⟩] =

𝜋1[⟨2(a2 ∨ 2(b2 ∨ c2)),2(a1 ∧ (b1 ∧ c1))⟩] = 2(a2 ∨ 2(b2 ∨ c2)) = 2(a2 ∨ (b2 ∨

c2)) = a2 ∨ (b2 ∨ c2) = a2 ∨ b2 ∨ c2.

On the other hand, 𝜋1[∼((a ∧ b) ∧ c)] = 𝜋1[∼((⟨a1, a2⟩ ∧ ⟨b1, b2⟩) ∧ ⟨c1, c2⟩)] =

𝜋1[∼(⟨a1 ∧ b1,2(a2 ∨ b2)⟩ ∧ ⟨c1, c2⟩)] = 𝜋1[∼⟨a1 ∧ b1 ∧ c1,2(2(a2 ∨ b2) ∨ c2)⟩] =

𝜋1[⟨2(2(a2 ∨ b2) ∨ c2),2((a1 ∧ b1 ∧ c1))⟩] = 2(2(a2 ∨ b2) ∨ c2) = 2((a2 ∨ b2) ∨

c2) = (a2 ∨ b2) ∨ c2 = a2 ∨ b2 ∨ c2.

• E(∼(a ∧ (b ∨ c))↔ ∼((a ∧ b) ∨ (a ∧ c)))

On the one hand, 𝜋1[∼(a ∧ (b ∨ c))] = 𝜋1[∼(⟨a1, a2⟩ ∧ (⟨b1, b2⟩ ∨ ⟨c1, c2⟩))]𝜋1[∼(⟨a1, a2⟩ ∧

⟨b1 ∨ c1, b2 ∧ c2⟩)] = 𝜋1[∼⟨a1 ∧ (b1 ∨ c1),2(a2 ∨ (b2 ∧ c2))⟩] = 𝜋1[⟨2(a2 ∨ (b2 ∧

c2)),2(a1 ∧ (b1 ∨ c1))⟩] = 2(a2 ∨ (b2 ∧ c2)) = a2 ∨ (b2 ∧ c2).

On the other hand, 𝜋1[∼((a ∧ b) ∨ (a ∧ c))] = 𝜋1[∼((⟨a1, a2⟩ ∧ ⟨b1, b2⟩) ∨ (⟨a1, a2⟩ ∧

⟨c1, c2⟩))] = 𝜋1[∼(⟨a1 ∧ b1,2(a2 ∨ b2)⟩ ∨ ⟨a1 ∧ c1,2(a2 ∨ c2)⟩)] = 𝜋1[∼⟨(a1 ∧ b1) ∨

(a1 ∧ c1),2(a2 ∨ b2) ∧ 2(a2 ∨ c2)⟩] = 𝜋1[⟨2(a2 ∨ b2) ∧ 2(a2 ∨ c2),2((a1 ∧ b1) ∨

(a1 ∧ c1))⟩] = 2(a2 ∨ b2) ∧ 2(a2 ∨ c2) = (a2 ∨ b2) ∧ (a2 ∨ c2) = a2 ∨ (b2 ∧ c2).

• E(∼(a ∨ (b ∧ c))↔ ∼((a ∨ b) ∧ (a ∨ c)))

On the one hand, 𝜋1[∼(a ∨ (b ∧ c))] = 𝜋1[∼(⟨a1, a2⟩ ∨ (⟨b1, b2⟩ ∧ ⟨c1, c2⟩)] =

𝜋1[∼(⟨a1, a2⟩ ∨ ⟨b1 ∧ c1,2(b2 ∨ c2)⟩)] = 𝜋1[∼⟨a1 ∨ (b1 ∧ c1), a2 ∧ 2(b2 ∨ c2)⟩] =
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𝜋1[⟨a2 ∧ 2(b2 ∨ c2),2(a1 ∨ (b1 ∧ c1))⟩] = a2 ∧ 2(b2 ∨ c2) = a2 ∧ (b2 ∨ c2).

On the other hand, 𝜋1[∼((a ∨ b) ∧ (a ∨ c))] = 𝜋1[∼((⟨a1, a2⟩ ∨ ⟨b1, b2⟩) ∧ (⟨a1, a2⟩ ∨

⟨c1, c2⟩))] = 𝜋1[∼(⟨a1 ∨ b1, a2 ∧ b2⟩ ∧ ⟨a1 ∨ c1, a2 ∧ c2⟩)] = 𝜋1[∼⟨(a1 ∨ b1) ∧ (a1 ∨

c1),2((a2 ∧ b2) ∨ (a2 ∧ c2))⟩] = 𝜋1[⟨2((a2 ∧ b2) ∨ (a2 ∧ c2)),2((a1 ∨ b1) ∧ (a1 ∨

c1))⟩] = 2((a2 ∧ b2) ∨ (a2 ∧ c2)) = (a2 ∧ b2) ∨ (a2 ∧ c2) = a2 ∧ (b2 ∨ c2).

• E(∼∼(a ∧ b)↔ (∼∼ a ∧ ∼∼ b))

On the one hand, 𝜋1[∼∼(a ∧ b)] = 𝜋1[∼∼(⟨a1, a2⟩ ∧ ⟨b1, b2⟩)] = 𝜋1[∼∼⟨a1 ∧

b1,2(a2 ∨ b2)⟩] = 𝜋1[∼⟨2(a2 ∨ b2),2(a1 ∧ b1)⟩] = 𝜋1[⟨2(a1 ∧ b1),2(2(a2 ∨

b2))⟩] = 2(a1 ∧ b1) = 2a1 ∧ 2b1.

On the other hand, 𝜋1[∼∼ a ∧ ∼∼ b] = 𝜋1[∼∼⟨a1, a2⟩ ∧ ∼∼⟨b1, b2⟩] = 𝜋1[∼⟨a2,2a1⟩ ∧

∼⟨b2,2b1⟩] = 𝜋1[⟨2a1,2a2⟩ ∧ ⟨2b1,2b2⟩] = 𝜋1[⟨2a1 ∧ 2b1,2(2a2 ∨ 2b2)⟩] =

2a1 ∧ 2b1.

Already in case of E(a → b) saying this is equivalent to proving that 𝜋1(a) ≤ 𝜋1(b),

this is, a1 ≤ b1. So,

• E(a → ∼∼ a)

On the one hand, 𝜋1[a] = 𝜋1[⟨a1, a2⟩] = a1.

On the other hand, 𝜋1[∼∼ a] = 𝜋1[∼∼⟨a1, a2⟩] = 𝜋1[∼⟨a2,2a1⟩] = 𝜋1[⟨2a1,2a2⟩] =

2a1.

• E(a → (∼ a → ∼(a → a)))

On the one hand, 𝜋1[a] = 𝜋1[⟨a1, a2⟩] = a1.

On the other hand, 𝜋1[∼ a → ∼(a → a)] = 𝜋1[∼⟨a1, a2⟩ → ∼(⟨a1, a2⟩ → ⟨a1, a2⟩)] =

𝜋1[⟨a2,2a1⟩ → ∼⟨a1 → a1,2a1 ∧ a2⟩] = 𝜋1[⟨a2,2a1⟩ → ⟨2a1 ∧ a2,2(a1 → a1)⟩ =

𝜋1[⟨a2 → (2a1 ∧ a2),2a2 ∧ 2(a1 → a1)] = a2 → (2a1 ∧ a2).

• E((a → b)→ (∼∼ a → ∼∼ b))

On the one hand, 𝜋1[a → b] = 𝜋1[⟨a1, a2⟩ → ⟨b1, b2⟩] = 𝜋1[⟨a1 → b1,2a1 ∧ b2⟩] =

a1 → b1.
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On the other hand, 𝜋1[∼∼ a → ∼∼ b] = 𝜋1[∼∼⟨a1, a2⟩ → ∼∼⟨b1, b2⟩] = 𝜋1[∼⟨a2,2a1⟩ →

∼⟨b2,2b1⟩] = 𝜋1[⟨2a1,2a2⟩ → ⟨2b1,2b2⟩] = 𝜋1[⟨2a1 → 2b1,22a1 ∧ 2b2⟩] =

2a1 → 2b1.

• E(∼ a → ∼(a ∧ b))

On the one hand, 𝜋1[∼ a] = 𝜋1[∼⟨a1, a2⟩] = 𝜋1[⟨a2,2a1⟩] = a2.

On the other hand, 𝜋1[∼(a ∧ b)] = 𝜋1[∼(⟨a1, a2⟩ ∧ ⟨b1, b2⟩)] = 𝜋1[∼⟨a1 ∧ b1,2(a2 ∨

b2)⟩] = 𝜋1[⟨2(a2 ∨ b2),2(a1 ∧ b1)⟩] = 2(a2 ∨ b2) = a2 ∨ b2.

• E(∼(a ∧ b)→ ∼(b ∧ a))

On the one hand, 𝜋1[∼(a ∧ b)] = 𝜋1[∼(⟨a1, a2⟩ ∧ ⟨b1, b2⟩)] = 𝜋1[∼⟨a1 ∧ b1,2(a2 ∨

b2)⟩] = 𝜋1[⟨2(a2 ∨ b2),2(a1 ∧ b1)⟩] = 2(a2 ∨ b2) = a2 ∨ b2.

On the other hand, 𝜋1[∼(b ∧ a)] = 𝜋1[∼(⟨b1, b2⟩ ∧ ⟨a1, a2⟩)] = 𝜋1[∼⟨b1 ∧ a1,2(b2 ∨

a2)⟩] = 𝜋1[⟨2(b2 ∨ a2),2(b1 ∧ a1)⟩] = 2(b2 ∨ a2) = b2 ∨ a2.

• E((∼ a → ∼ b)→ (∼(a ∧ b)→ ∼ b))

On the one hand, 𝜋1[∼ a → ∼ b] = 𝜋1[∼⟨a1, a2⟩ → ∼⟨b1, b2⟩] = 𝜋1[⟨a2,2a1⟩ →

⟨b2,2b1⟩] = 𝜋1[⟨a2 → b2,2a2 ∧ 2b1⟩] = a2 → b2.

On the other hand, 𝜋1[∼(a ∧ b) → ∼ b] = 𝜋1[∼(⟨a1, a2⟩ ∧ ⟨b1, b2⟩) → ∼⟨b1, b2⟩] =

𝜋1[∼⟨a1 ∧ b1,2(a2 ∨ b2)⟩ → ⟨b2,2b1⟩] = 𝜋1[⟨2(a2 ∨ b2),2(a1 ∧ b1)⟩ → ⟨b2,2b1⟩] =

𝜋1[⟨2(a2 ∨ b2)→ b2,22(a2 ∨ b2) ∧ 2b1⟩] = 2(a2 ∨ b2)→ b2 = (a2 ∨ b2)→ b2.

• E((∼ a → ∼ b)→ ((∼ c → ∼ 𝜃)→ (∼(a ∧ c)→ ∼(b ∧ 𝜃))))

On the one hand, 𝜋1[∼ a → ∼ b] = 𝜋1[∼⟨a1, a2⟩ → ∼⟨b1, b2⟩] = 𝜋1[⟨a2,2a1⟩ →

⟨b2,2b1⟩] = 𝜋1[⟨a2 → b2,2a2 ∧ 2b1⟩] = a2 → b2.

On the other hand, 𝜋1[(∼ c → ∼ d) → (∼(a ∧ c) → ∼(b ∧ d))] = 𝜋1[(∼⟨c1, c2⟩ →

∼⟨d1, d2⟩) → (∼(⟨a1, a2⟩ ∧ ⟨c1, c2⟩) → ∼(⟨b1, b2⟩ ∧ ⟨d1, d2⟩)] = 𝜋1[(⟨c2,2c1⟩ →

⟨d2,2d1⟩) → (∼⟨a1 ∧ c1,2(a2 ∨ c2)⟩ → ∼⟨b1 ∧ d1,2(b2 ∨ d2)⟩)] = 𝜋1[⟨c2 →

d2,2c2 ∧ 2d1⟩ → (⟨2(a2 ∨ c2),2(a1 ∧ c1)⟩ → ⟨2(b2 ∨ d2),2(b1 ∧ d1)⟩)] =

𝜋1[⟨c2 → d2,2c2 ∧ 2d1⟩ → ⟨2(a2 ∨ c2) → 2(b2 ∨ d2),22(a2 ∨ c2) ∧ 2(b1 ∧
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d1)⟩] = 𝜋1[⟨(c2 → d2) → (2(a2 ∨ c2) → 2(b2 ∨ d2)),2(c2 → d2) ∧ (22(a2 ∨ c2) ∧

2(b1 ∧ d1))⟩] = (c2 → d2) → (2(a2 ∨ c2) → 2(b2 ∨ d2)) = (c2 → d2) → ((a2 ∨

c2)→ (b2 ∨ d2)).

• E(∼∼∼ a → ∼ a)

On the one hand, 𝜋1[∼∼∼ a] = 𝜋1[∼∼∼⟨a1, a2⟩] = 𝜋1[∼∼⟨a2,2a1⟩] = 𝜋1[∼⟨2a1,2a2⟩] =

𝜋1[⟨2a2,22a1⟩] = 2a2 = a2.

On the other hand, 𝜋1[∼ a] = 𝜋1[∼⟨a1, a2⟩] = 𝜋1[⟨a2,2a1⟩] = a2.

We have to prove that a → a = (a → a) → (a → a) and that ∼ a → ∼ a =

(∼ a → ∼ a) → (∼ a → ∼ a). Taking |x| = y = (a → a) in Proposition 7.1, we have

that (a → a)→ (a → a) = a → a, that is what we wanted to prove. The same idea for

negation.

We want to prove that if a → b = |a → b|, b → a = |b → a|, ∼ a → ∼ a =

| ∼ a → ∼ b|, ∼ b → ∼ a = | ∼ b → ∼ a|, then a = b. As a → b = |a → b| and

∼ b → ∼ a = | ∼ b → ∼ a|, we have a ⪯ b and ∼ b ⪯ ∼ a and therefore by QN4c we

conclude that a ≤ b. We also have that b → a = |b → a| and ∼ a → ∼ b = | ∼ a → ∼ b|

and therefore b ⪯ a and ∼ a ⪯ ∼ b and again by QN4c we conclude that b ≤ a. As

a ≤ b and b ≤ a we have a = b and this is what we wanted to prove.

We have to prove that if a = a → a, a → b = (a → b) → (a → b) then

b = b → b. Again, using Proposition 7.1, taking |x| = a → a and y = b, we have that

(a → a) → b = b, but we have that a → a = a and therefore a → b = b, but as

a → b = (a → b)→ (a → b) and a → b = b we have that b = b → b.

Corollary 1. The class of QN4-lattices and the class of Alg*(ℒQN4)-algebras coincide.
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5 Fragments of 𝒬𝒩ℒ

In this chapter we turn our attention to the fragment of quasi-Nelson logic that

contain two “substructural” connectives, namely: the strong conjunction (*) and the

strong implication (⇒), which together form a residuated pair over any quasi-Nelson

algebra (viewed as residuated lattices).

The main question which we will address is whether the algebraic semantics

of a given fragment of quasi-Nelson logic (i.e. the corresponding class of subreducts of

quasi-Nelson algebras) can be axiomatized by means of equations or quasi-equations.

Our main mathematical tool in this investigation will be the twist-algebra representation,

which will allow us to establish a bridge between the subreducts of quasi-Nelson algebras

and more well-known subreducts of Heyting algebras. For ease of reference, the classes of

subreducts of quasi-Nelson algebras that have been characterized up to now are shown

in Table 5.1.

It should be noted that some of the above-mentioned subreducts of quasi-

Nelson algebras (namely, quasi-Nelson monoids, quasi-Kleene algebras with weak pseudo-

complement and quasi-Kleene algebras) are not BP-algebraizable. However, quasi-

Nelson implication algebras, quasi-Nelson pocrims and quasi-Nelson semihoops are

BP-algebraizable.

Nascimento and Rivieccio in [17] began to study the {∼,→}-fragment. Now, we

will focus on the study of the fragment {∼, *,⇒} and {∼, *,⇒,∧} of quasi-Nelson logic,

respectively in the sections 5.1 and 5.2.
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Operations Subreducts of QNA
∼,→ quasi-Nelson implication algebras

[0, 1,¬]
∼, * quasi-Nelson monoids

[0, 1,¬]
∼, *,→ quasi-Nelson pocrims

[0, 1,¬,⇒]
∼,∧,→ quasi-Nelson semihoops

[0, 1,¬, *,⇒]
∼,¬,∧,∨ quasi-Kleene algebras with weak pseudo-complement

[0, 1]
0,∼,∧,∨ quasi-Kleene algebras

[1]

Table 5.1: Subreducts of quasi-Nelson algebras characterized so far

For the next sections, we employ the following abbreviations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 := x → x

0 := ∼(x → x)

|x| := x → x

x ≡ y := x → y = y → x = 1

x ⊙ y := ∼(x → ∼ y)

x ⊕ y := ∼(∼ x ∧ ∼ y)

q(x , y, z) := (x → y)→ ((y → x)→ ((∼ x → ∼ y)→ ((∼ y → ∼ x)→ z)))

Following standard notation on residuated lattices, given a natural number n,

we define the term: xn := x * . . . * x⏟  ⏞  
n times

, where we set x0 := 1 and x1 := x . We say that the

operation * is (n + 1)-potent when the equation xn = xn+1 is satisfied.

5.1 {∼, *,⇒}-fragment

We will begin our section with definitions and important results for the under-

standing of the study of the {∼, *,⇒}-fragment of the quasi-Nelson logic.
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Definition 47 ([23], Def. 3.10). A 3-potent commutative monoid is an algebra

M = ⟨M ; *, 1⟩ of type ⟨2, 0⟩ such that:

1. M = ⟨M ; *, 1⟩ is a commutative monoid.

2. M |= x2 = x3.

Definition 48 ([23], Def. 4.1). An algebra A = ⟨A; →,∼, 0, 1⟩ of type ⟨2, 1, 0, 0⟩ is

a quasi-Nelson implication algebra (QNI-algebra) if the following equations are

satisfied:

QNI.1 ∼ 1 = 0 and ∼ 0 = 1.

QNI.2 1→ x = x .

QNI.3 x → (y → x) = x → x = 0→ x = 1.

QNI.4 x → (y → z) = y → (x → z) = (x → y)→ (x → z).

QNI.5 (x → y)→ (∼∼ x → ∼∼ y) = 1.

QNI.6 ∼ x = ∼∼∼ x .

QNI.7 q(x , y, x) = q(x , y, y).

QNI.8 (x ⊙ y)→ z = ∼∼ x → (∼∼ y → z).

QNI.9 x ⊙ y ≡ y ⊙ x .

QNI.10 x ⊙ (y ⊙ z)≡ (x ⊙ y)⊙ z .

QNI.11 x ⊙ (x → y)≡ x ⊙ y.

QNI.12 ∼(x → y)≡∼∼ x ⊙∼ y.

QNI.13 ∼ x → ∼ y ≡∼ x → (∼ x ⊙∼ y).

QNI.14 (∼∼ x → ∼∼ y)⊙ (∼∼ x → ∼∼ z)≡∼∼ x → (y ⊙ z).

The variety of QNI-algebras will be henceforth denoted by 𝒱QNI.

Definition 49 ([23]). A structure ⟨P; ≤, *, 1⟩ of type ⟨2, 0⟩ is called a pomonoid

whenever:

(i) ⟨P; ≤⟩ is a partially ordered set having 1 as top element.
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(ii) ⟨P; *, 1⟩ is a commutative monoid.

(iii) The order ≤ is compatible with the monoid operation, that is, x ≤ z and y ≤ w

entail x * y ≤ z * w.

Definition 50 ([23]). A pocrim (partially ordered commutative residuated integral

monoid) is a structure ⟨P; ≤,⇒, *, 1⟩ of type ⟨2, 1, 0⟩ such that:

(i) ⟨P; ≤, *, 1⟩ is a pomonoid.

(ii) The pair (*,⇒) is residuated, that is, x * y ≤ z if and only if x ≤ y ⇒ z .

Definition 51 ([23], Def. 4.9). An algebra A = ⟨A; →, *,∼, 0, 1⟩ of type ⟨2, 2, 1, 0, 0⟩ is

a quasi-Nelson pocrim (QNP) whenever:

(QNPa) ⟨A; →,∼, 0, 1⟩ is a QNI-algebra.

(QNPb) ⟨A; *, 1⟩ is a 3-potent commutative monoid.

(QNPc) For all x , y ∈ A, we have:

(QNPc.1) (x * y)→ z = x → (y → z).

(QNPc.2) x → (y * z)≡ (x → y) * (x → z).

(QNPc.3) ∼(x * y)≡ (x → ∼ y) * (y → ∼ x).

(QNPc.4) ∼(x → y)≡∼∼ x * ∼ y.

The variety of QNP will be henceforth denoted by 𝒱QNP.

We now proceed to show ([23]), that every quasi-Nelson pocrim may be repre-

sented as a twist-algebra over an implicative semilattice enriched with a nucleus operator.

Definition 52 ([23], Def. 4.11). A bounded implicative semilattice with a nucleus

is an algebra S = ⟨S ; →,∧,2, 0, 1⟩ such that:

1. ⟨S ; →,∧, 0, 1⟩ is a bounded implicative semilattice.

2. 2 is a nucleus on the bounded Hilbert algebra reduct ⟨S ; →, 0, 1⟩.

Lemma 5 ([23], Lem. 4.13). For every A = ⟨A; →, *,∼, 0, 1⟩ ∈ QNP, the relation ≡ is

compatible with * and the quotient A◁▷ := ⟨A/≡; →, *,2, 0, 1⟩ is a bounded implicative
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semilattice with a nucleus given by 2[a] := [∼∼ a] for all a ∈ A.

Definition 53 ([23], Def. 4.14). Let S = ⟨S ; →,∧,2, 0, 1⟩ be a bounded implicative

semilattice with a nucleus. Define the algebra S◁▷ = ⟨S◁▷; →, *,∼, 0, 1⟩ with universe:

S◁▷ := {⟨a1, a2⟩ ∈ S × S : a2 = 2a2, a1 ∧ a2 = 0} and operations given, for all ⟨a1, a2⟩,

⟨b1, b2⟩ ∈ S × S by:

0 := ⟨0, 1⟩

1 := ⟨1, 0⟩

∼⟨a1, a2⟩ := ⟨a2,2a1⟩

⟨a1, a2⟩ → ⟨b1, b2⟩ := ⟨a1 → b1,2a1 ∧ b2⟩

⟨a1, a2⟩ * ⟨b1, b2⟩ := ⟨a1 ∧ b1, (a1 → b2) ∧ (b1 → a2)⟩

A QNP twist-algebra over S is any subalgebra A ≤ S◁▷ satisfying 𝜋1[A] = S .

Theorem 12. [[23], Thm. 4.16] Every A ∈ QNP is isomorphic to a QNP twist-algebra

over the implicative semilattice with a nucleus A◁▷ through the map 𝜄 : A→ A◁▷ ×A◁▷

given by 𝜄(a) := ⟨[a], [∼ a]⟩ for all a ∈ A.

5.1.1 A Hilbert-style calculus

In this subsection we introduce a Hilbert-style calculus that determines a logic,

henceforth denoted by ℒQNP. Our aim is to show that ℒQNP is algebraizable, and that

its equivalent algebraic semantics is precisely the variety 𝒱QNP.

The Hilbert-system for ℒQNP consists of the following axiom schemes together

with the single inference rule of modus ponens (MP): 𝛼, 𝛼→ 𝛽 ⊢ 𝛽.

Ax1 𝛼→ (𝛽 → 𝛼)

Ax2 (𝛼→ (𝛽 → 𝛾))→ ((𝛼→ 𝛽)→ (𝛼→ 𝛾))

Ax3 ∼∼∼𝛼→ ∼𝛼
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Ax4 (𝛼→ 𝛽)→ (∼∼𝛼→ ∼∼ 𝛽)

Ax5 𝛼→ ∼∼𝛼

Ax6 (𝛼⊙ (𝛼→ 𝛽))→ (𝛼⊙ 𝛽)

Ax7 ∼∼𝛼→ (∼ 𝛽 → ∼(𝛼→ 𝛽))

Ax8 ∼(𝛼→ 𝛽)→ ∼ 𝛽

Ax9 ∼(𝛼→ 𝛽)→ ∼∼𝛼

Ax10 ∼(𝛼→ 𝛼)→ 𝛽

Ax11 (𝛼 * 𝛽)→ 𝛼

Ax12 (𝛼 * 𝛽)→ 𝛽

Ax13 𝛼→ (𝛽 → (𝛼 * 𝛽))

Ax14 ∼(𝛼 * 𝛽)↔ ((𝛼→ ∼ 𝛽) * (𝛽 → ∼𝛼))

Ax15 (𝛼→ (𝛽 * 𝛾))↔ ((𝛼→ 𝛽) * (𝛼→ 𝛾))

Ax16 ∼(𝛼 * (𝛽 * 𝛾))↔ ∼((𝛼 * 𝛽) * 𝛾))

Ax17 ∼((𝛼 * 𝛽)→ 𝛾)→ ∼(𝛼→ (𝛽 → 𝛾))

Axioms Ax1-Ax10 together with modus ponens constitute an axiomatization

of the ℒQNI. We started with them and choose between the axioms of 𝒬𝒩ℒ [14] the

ones that were sound with respect to QNP, then we added axioms in order to prove

that our calculus is algebraizable and that its equivalent algebraic semantics is the class

of 𝒱QNP as defined in Definition 51.

Remark 13. The Deduction Theorem holds for ℒQNP.

5.1.2 ℒQNP is BP-Algebraizable

In this subsection we prove that the calculus introduced in the previous subsection

is algebraizable in sense of Blok and Pigozzi. Using this result, we will axiomatize the
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equivalent algebraic semantics of ℒQNP via the algorithm in Theorem 8 and show that is

term-equivalent to the variety 𝒱QNP.

Theorem 13. ℒQNP is BP-algebraizable with E(𝛼) := {𝛼 = 𝛼 → 𝛼} and ∆(𝛼, 𝛽) :=

{𝛼→ 𝛽, 𝛽 → 𝛼,∼𝛼→ ∼ 𝛽,∼ 𝛽 → ∼𝛼}.

Proof. By Theorem 7, we have prove (Ref), (MP), (Alg) and (Cong). The first three

follow the same reasoning of Theorem 11. As to (Cong), we need to prove it for each

connective 𝜆 ∈ {→, *,∼}.

For (∼), follow the same reasoning of Theorem 11.

Now consider the sets: Γ1 = {𝛼1 → 𝛽1, 𝛽1 → 𝛼1,∼𝛼1 → ∼ 𝛽1,∼ 𝛽1 → ∼𝛼1}

and Γ2 = {𝛼2 → 𝛽2, 𝛽2 → 𝛼2,∼𝛼2 → ∼ 𝛽2,∼ 𝛽2 → ∼𝛼2}.

For (→) and (*), we need to prove that:

Γ1 ∪ Γ2 ⊢ℒQNP (𝛼1 → 𝛼2)→ (𝛽1 → 𝛽2) (5.1)

Γ1 ∪ Γ2 ⊢ℒQNP (𝛽1 → 𝛽2)→ (𝛼1 → 𝛼2) (5.2)

Γ1 ∪ Γ2 ⊢ℒQNP ∼(𝛼1 → 𝛼2)→ ∼(𝛽1 → 𝛽2) (5.3)

Γ1 ∪ Γ2 ⊢ℒQNP ∼(𝛽1 → 𝛽2)→ ∼(𝛼1 → 𝛼2) (5.4)

Γ1 ∪ Γ2 ⊢ℒQNP (𝛼1 * 𝛼2)→ (𝛽1 * 𝛽2) (5.5)

Γ1 ∪ Γ2 ⊢ℒQNP (𝛽1 * 𝛽2)→ (𝛼1 * 𝛼2) (5.6)

Γ1 ∪ Γ2 ⊢ℒQNP ∼(𝛼1 * 𝛼2)→ ∼(𝛽1 * 𝛽2) (5.7)

Γ1 ∪ Γ2 ⊢ℒQNP ∼(𝛽1 * 𝛽2)→ ∼(𝛼1 * 𝛼2) (5.8)

The item (5.2), follows the same line of reasoning from (5.1), so we will only

show item (5.1).
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1. 𝛼1 → 𝛼2 Hypothesis
2. 𝛽1 Hypothesis
3. 𝛽1 → 𝛼1 Premise
4. 𝛼1 MP, 2, 3
5. 𝛼2 MP, 3, 5
6. 𝛼2 → 𝛽2 Premise
7. 𝛽2 MP, 5, 6
8. 𝛽1 → 𝛽2 DT, 2–7
9. (𝛼1 → 𝛼2)→ (𝛽1 → 𝛽2) DT, 1–8

The item (5.4), follows the same line of reasoning from (5.3), so we will only

show item (5.3).

1. ∼(𝛼1 → 𝛼2) Hypothesis
2. ∼(𝛼1 → 𝛼2)→ ∼𝛼2 Ax8
3. ∼𝛼2 MP, 1, 2
4. ∼𝛼2 → ∼ 𝛽2 Premise
5. ∼ 𝛽2 MP, 3, 4
6. ∼(𝛼1 → 𝛼2)→ ∼∼𝛼1 Ax9
7. ∼∼𝛼1 MP, 1, 6
8. (𝛼1 → 𝛽1)→ (∼∼𝛼1 → ∼∼ 𝛽1) Ax4
9. 𝛼1 → 𝛽1 Premise
10. ∼∼𝛼1 → ∼∼ 𝛽1 MP, 8, 9
11. ∼∼ 𝛽1 MP, 7, 10
12. ∼∼ 𝛽1 → (∼ 𝛽2 → ∼(𝛽1 → 𝛽2)) Ax7
13. ∼ 𝛽2 → ∼(𝛽1 → 𝛽2) MP, 11, 12
14. ∼(𝛽1 → 𝛽2) MP, 5, 13
15. ∼(𝛼1 → 𝛼2)→ ∼(𝛽1 → 𝛽2) DT, 1–14

The item (5.6), follows the same line of reasoning from (5.5), so we will only

show item (5.5).

1. 𝛼1 * 𝛼2 Hypothesis
2. (𝛼1 * 𝛼2)→ 𝛼1 Ax11
3. 𝛼1 MP, 1, 2
4. 𝛼1 → 𝛽1 Premise
5. 𝛽1 MP, 3, 4
6. (𝛼1 * 𝛼2)→ 𝛼2 Ax12
7. 𝛼2 MP, 1, 6
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8. 𝛼2 → 𝛽2 Premise
9. 𝛽2 MP, 7, 8
10. 𝛽1 → (𝛽2 → (𝛽1 * 𝛽2)) Ax13
11. 𝛽2 → (𝛽1 * 𝛽2) MP, 5, 10
12. 𝛽1 * 𝛽2 MP, 9, 11
13. (𝛼1 * 𝛼2)→ (𝛽1 * 𝛽2) DT, 1–12

The item (5.8), follows the same line of reasoning from (5.7), so we will only

show item (5.7).

1. ∼(𝛼1 * 𝛼2) Hypothesis
2. ∼(𝛼1 * 𝛼2)→ ((𝛼1 → ∼𝛼2) * (𝛼2 → ∼𝛼1)) Ax14 (→)
3. (𝛼1 → ∼𝛼2) * (𝛼2 → ∼𝛼1) MP, 1, 2
4. ((𝛼1 → ∼𝛼2) * (𝛼2 → ∼𝛼1))→ (𝛼1 → ∼𝛼2) Ax11
5. 𝛼1 → ∼𝛼2 MP, 3, 4
6. ∼𝛼2 → ∼ 𝛽2 Premise
7. 𝛼1 → ∼ 𝛽2 Lemma 4, 5, 6
8. ((𝛼1 → ∼𝛼2) * (𝛼2 → ∼𝛼1))→ (𝛼2 → ∼𝛼1) Ax12
9. 𝛼2 → ∼𝛼1 MP, 3, 8
10. ∼𝛼1 → ∼ 𝛽1 Premise
11. 𝛼2 → ∼ 𝛽1 Lemma 4, 9, 10
12. 𝛽1 Hypothesis
13. 𝛽1 → 𝛼1 Premise
14. 𝛼1 MP, 12, 13
15. ∼ 𝛽2 MP, 7, 14
16. 𝛽1 → ∼ 𝛽2 DT, 12–15
17. 𝛽2 Hypothesis
18. 𝛽2 → 𝛼2 Premise
19. 𝛼2 MP, 17, 18
20. ∼ 𝛽1 MP, 11, 19
21. 𝛽2 → ∼ 𝛽1 DT, 17–20
22. (𝛽1 → ∼ 𝛽2)→ ((𝛽2 → ∼ 𝛽1)→ ((𝛽1 → ∼ 𝛽2) * (𝛽2 → ∼ 𝛽1))) Ax13
23. (𝛽2 → ∼ 𝛽1)→ ((𝛽1 → ∼ 𝛽2) * (𝛽2 → ∼ 𝛽1)) MP, 16, 22
24. (𝛽1 → ∼ 𝛽2) * (𝛽2 → ∼ 𝛽1) MP, 21, 23
25. ((𝛽1 → ∼ 𝛽2) * (𝛽2 → ∼ 𝛽1))→ ∼(𝛽1 * 𝛽2) Ax14 (←)
26. ∼(𝛽1 * 𝛽2) MP, 24, 25
27. ∼(𝛼1 * 𝛼2)→ ∼(𝛽1 * 𝛽2) DT, 1–26

Having proved that our calculus is algebraizable in the sense Blok and Pigozzi,

we have (see [4]), a corresponding equivalent algebraic semantics Alg*(ℒQNP) which
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satisfies the following equations and quasi-equations:

1. E(p) for each p ∈ Ax.

2. E(∆(p, p)).

3. E(p) and E(p → q) implies E(q).

4. E(∆(p, q)) implies p = q.

As an example of the notation E(p) above, for each axiom p ∈ Ax, the class

of algebras Alg*(ℒQNP) must satisfy p = p → p. Taking Ax3 as an example, the class

Alg*(ℒQNP) has x → ∼∼ x = (x → ∼∼ x)→ (x → ∼∼ x) as one of its equations.

Now, in order to prove that the class of algebras Alg*(ℒQNP) is term-equivalent

to the class of QNP (Definition 51), that is, the content of the next propositions.

Proposition 10. Alg*(ℒQNP) ⊆ 𝒱QNP.

Proof. It is easy to see that QNPa is true for A ∈ Alg*(ℒQNP).

To prove QNPb, we need to show that the commutative, associative laws and

identity element laws holds for every A ∈ Alg*(ℒQNP), as well as x2 = x3.

• Commutative law: x * y = y * x .

1. (𝛼 * 𝛽)→ (𝛽 * 𝛼)

1. 𝛼 * 𝛽 Hypothesis
2. (𝛼 * 𝛽)→ 𝛼 Ax11
3. 𝛼 MP, 1, 2
4. (𝛼 * 𝛽)→ 𝛽 Ax12
5. 𝛽 MP, 1, 4
6. 𝛽 → (𝛼→ (𝛽 * 𝛼)) Ax13
7. 𝛼→ (𝛽 * 𝛼) MP, 5, 6
8. 𝛽 * 𝛼 MP, 3, 7
9. (𝛼 * 𝛽)→ (𝛽 * 𝛼) DT, 1–8

2. (𝛽 * 𝛼)→ (𝛼 * 𝛽), this is an instantiation of previous item.
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3. ∼(𝛼 * 𝛽)→ ∼(𝛽 * 𝛼)

1. ∼(𝛼 * 𝛽) Hypothesis
2. ∼(𝛼 * 𝛽)→ ((𝛼→ ∼ 𝛽) * (𝛽 → ∼𝛼)) Ax14 (→)
3. (𝛼→ ∼ 𝛽) * (𝛽 → ∼𝛼) MP, 1, 2
4. ((𝛼→ ∼ 𝛽) * (𝛽 → ∼𝛼))→ (𝛼→ ∼ 𝛽) Ax11
5. 𝛼→ ∼ 𝛽 MP, 3, 4
6. ((𝛼→ ∼ 𝛽) * (𝛽 → ∼𝛼))→ (𝛽 → ∼𝛼) Ax12
7. 𝛽 → ∼𝛼 MP, 3, 6
8. (𝛽 → ∼𝛼)→ ((𝛼→ ∼ 𝛽)→ ((𝛽 → ∼𝛼) * (𝛼→ ∼ 𝛽))) Ax13
9. (𝛼→ ∼ 𝛽)→ ((𝛽 → ∼𝛼) * (𝛼→ ∼ 𝛽)) MP, 7, 8
10. (𝛽 → ∼𝛼) * (𝛼→ ∼ 𝛽) MP, 5, 9
11. ((𝛽 → ∼𝛼) * (𝛼→ ∼ 𝛽))→ ∼(𝛽 * 𝛼) Ax14 (←)
12. ∼(𝛽 * 𝛼) MP 10, 11
13. ∼(𝛼 * 𝛽)→ ∼(𝛽 * 𝛼) DT, 1–12

4. ∼(𝛽 * 𝛼)→ ∼(𝛼 * 𝛽), this is an instantiation of previous item.

• Associative law: x * (y * z) = (x * y) * z .

1. (𝛼 * (𝛽 * 𝛾))→ ((𝛼 * 𝛽) * 𝛾)

1. 𝛼 * (𝛽 * 𝛾) Hypothesis
2. (𝛼 * (𝛽 * 𝛾))→ 𝛼 Ax11
3. 𝛼 MP, 1, 2
4. (𝛼 * (𝛽 * 𝛾))→ (𝛽 * 𝛾) Ax12
5. (𝛽 * 𝛾)→ 𝛽 Ax11
6. (𝛼 * (𝛽 * 𝛾))→ 𝛽 Lemma 4, 4, 5
7. 𝛽 MP, 1, 6
8. 𝛼→ (𝛽 → (𝛼 * 𝛽)) Ax13
9. 𝛽 → (𝛼 * 𝛽) MP, 3, 8
10. 𝛼 * 𝛽 MP, 7, 9
11. (𝛽 * 𝛾)→ 𝛾 Ax12
12. (𝛼 * (𝛽 * 𝛾))→ 𝛾 Lemma 4, 4, 11
13. 𝛾 MP, 1, 12
14. (𝛼 * 𝛽)→ (𝛾 → ((𝛼 * 𝛽) * 𝛾)) Ax13
15. 𝛾 → ((𝛼 * 𝛽) * 𝛾) MP, 10, 14
16. (𝛼 * 𝛽) * 𝛾 MP, 13, 15
17. (𝛼 * (𝛽 * 𝛾))→ ((𝛼 * 𝛽) * 𝛾) DT, 1–16
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2. ((𝛼 * 𝛽) * 𝛾)→ (𝛼 * (𝛽 * 𝛾))

1. (𝛼 * 𝛽) * 𝛾 Hypothesis
2. ((𝛼 * 𝛽) * 𝛾)→ (𝛼 * 𝛽) Ax11
3. (𝛼 * 𝛽)→ 𝛼 Ax11
4. ((𝛼 * 𝛽) * 𝛾)→ 𝛼 Lemma 4, 2, 3
5. 𝛼 MP, 1, 4
6. (𝛼 * 𝛽)→ 𝛽 Ax12
7. ((𝛼 * 𝛽) * 𝛾)→ 𝛽 Lemma 4, 2, 6
8. 𝛽 MP, 1, 7
9. ((𝛼 * 𝛽) * 𝛾)→ 𝛾 Ax12
10. 𝛾 MP, 1, 9
11. 𝛽 → (𝛾 → (𝛽 * 𝛾)) Ax13
12. 𝛾 → (𝛽 * 𝛾) MP, 8, 11
13. 𝛽 * 𝛾 MP, 10, 12
14. 𝛼→ ((𝛽 * 𝛾)→ (𝛼 * (𝛽 * 𝛾))) Ax13
15. (𝛽 * 𝛾)→ (𝛼 * (𝛽 * 𝛾)) MP, 5, 14
16. 𝛼 * (𝛽 * 𝛾) MP, 13, 15
17. ((𝛼 * 𝛽) * 𝛾)→ (𝛼 * (𝛽 * 𝛾)) DT, 1–16

3. ∼(𝛼 * (𝛽 * 𝛾))→ ∼((𝛼 * 𝛽) * 𝛾) this is Ax16 (→).

4. ∼((𝛼 * 𝛽) * 𝛾)→ ∼(𝛼 * (𝛽 * 𝛾)) this is Ax16 (←).

• Identity element: x * 1 = x .

1. (𝛼 * ⊤)→ 𝛼 this is Ax11.

2. 𝛼→ (𝛼 * ⊤)

1. 𝛼 Hypothesis
2. 𝛼→ (⊤ → (𝛼 * ⊤)) Ax13
3. ⊤ → (𝛼 * ⊤) MP, 1, 3
4. 𝛼→ 𝛼 Proposition 1
5. ⊤ Definition, 4
6. 𝛼 * ⊤ MP, 3, 5
7. 𝛼→ (𝛼 * ⊤) DT, 1–6

3. ∼(𝛼 * ⊤)→ ∼𝛼

1. ∼(𝛼 * ⊤) Hypothesis
2. ∼(𝛼 * ⊤)→ ((𝛼→ ∼⊤) * (⊤ → ∼𝛼)) Ax14 (→)
3. (𝛼→ ∼⊤) * (⊤ → ∼𝛼) MP, 1, 2
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4. ((𝛼→ ∼⊤) * (⊤ → ∼𝛼))→ (⊤ → ∼𝛼) Ax12
5. ⊤ → ∼𝛼 MP, 3, 4
6. 𝛼→ 𝛼 Proposition 1
7. ⊤ Definition, 6
8. ∼𝛼 MP, 5, 7
9. ∼(𝛼 * ⊤)→ ∼𝛼 DT, 1–8

4. ∼𝛼→ ∼(𝛼 * ⊤)

1. ∼𝛼 Hypothesis
2. ((𝛼→ ∼⊤) * (⊤ → ∼𝛼))→ ∼(𝛼 * ⊤) Ax14 (→)
3. 𝛼 Hypothesis
4. 𝛼→ ∼∼𝛼 Ax5
5. ∼∼𝛼→ (∼𝛼→ ∼(𝛼→ 𝛼)) Ax7
6. 𝛼→ (∼𝛼→ ∼(𝛼→ 𝛼)) Lemma 4, 4, 5
7. ∼𝛼→ ∼(𝛼→ 𝛼) MP, 3, 6
8. ∼(𝛼→ 𝛼) MP, 1, 7
9. ∼⊤ Definition, 8
10. 𝛼→ ∼⊤ DT, 3–9
11. ⊤ Hypothesis
12. ∼𝛼 Repetition, 1
13. ⊤ → ∼𝛼 DT, 11–12
14. (𝛼→ ∼⊤)→ ((⊤ → ∼𝛼)→ ((𝛼→ ∼⊤) * (⊤ → ∼𝛼))) Ax13
15. (⊤ → ∼𝛼)→ ((𝛼→ ∼⊤) * (⊤ → ∼𝛼)) MP, 10, 14
16. (𝛼→ ∼⊤) * (⊤ → ∼𝛼) MP, 13, 15
17. ∼(𝛼 * ⊤) MP, 2, 16
18. ∼𝛼→ ∼(𝛼 * ⊤) DT, 1–17

Also, we need to prove that x2 = x3.

1. (𝛼 * 𝛼 * 𝛼)→ (𝛼 * 𝛼), that is, ((𝛼 * 𝛼) * 𝛼)→ (𝛼 * 𝛼) this is Ax11.

2. (𝛼 * 𝛼)→ (𝛼 * 𝛼 * 𝛼)

1. 𝛼 * 𝛼 Hypothesis
2. (𝛼 * 𝛼)→ (𝛼→ (𝛼 * 𝛼 * 𝛼)) Ax13
3. 𝛼→ (𝛼 * 𝛼 * 𝛼) MP, 1, 2
4. (𝛼 * 𝛼)→ 𝛼 Ax11
5. 𝛼 MP, 1, 4
6. 𝛼 * 𝛼 * 𝛼 MP, 3, 5
7. (𝛼 * 𝛼)→ (𝛼 * 𝛼 * 𝛼) DT, 1–6
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3. ∼(𝛼 * 𝛼 * 𝛼)→ ∼(𝛼 * 𝛼)

1. ∼(𝛼 * 𝛼 * 𝛼) Hypothesis
2. ((𝛼→ ∼𝛼) * (𝛼→ ∼𝛼))→ ∼(𝛼 * 𝛼) Ax14 (←)
3. ∼(𝛼 * 𝛼 * 𝛼)→ (((𝛼 * 𝛼)→ ∼𝛼) * (𝛼→ ∼(𝛼 * 𝛼))) Ax14 (→)
4. ((𝛼 * 𝛼)→ ∼𝛼) * (𝛼→ ∼(𝛼 * 𝛼)) MP, 1, 3
5. ((𝛼 * 𝛼)→ ∼𝛼) * (𝛼→ ∼(𝛼 * 𝛼))→ ((𝛼 * 𝛼)→ ∼𝛼) Ax11
6. (𝛼 * 𝛼)→ ∼𝛼 MP, 4, 5
7. 𝛼 Hypothesis
8. 𝛼→ (𝛼→ (𝛼 * 𝛼)) Ax13
9. 𝛼→ (𝛼 * 𝛼) MP, 7, 8
10. 𝛼 * 𝛼 MP, 7, 9
11. ∼𝛼 MP, 6, 10
12. 𝛼→ ∼𝛼 DT, 7–11
13. (𝛼→ ∼𝛼)→ ((𝛼→ ∼𝛼)→ ((𝛼→ ∼𝛼) * (𝛼→ ∼𝛼))) Ax13
14. (𝛼→ ∼𝛼)→ ((𝛼→ ∼𝛼) * (𝛼→ ∼𝛼)) MP, 12, 13
15. (𝛼→ ∼𝛼) * (𝛼→ ∼𝛼) MP, 12, 14
16. ∼(𝛼 * 𝛼) MP, 2, 15
17. ∼(𝛼 * 𝛼 * 𝛼)→ ∼(𝛼 * 𝛼) DT, 1–16

4. ∼(𝛼 * 𝛼)→ ∼(𝛼 * 𝛼 * 𝛼)

1. ∼(𝛼 * 𝛼) Hypothesis
2. (((𝛼 * 𝛼)→ ∼𝛼) * (𝛼→ ∼(𝛼 * 𝛼)))→ ∼(𝛼 * 𝛼 * 𝛼) Ax14 (←)
3. 𝛼 * 𝛼 Hypothesis
4. (𝛼 * 𝛼)→ 𝛼 Ax11
5. 𝛼 MP, 3, 4
6. ∼(𝛼 * 𝛼)→ ((𝛼→ ∼𝛼) * (𝛼→ ∼𝛼)) Ax14 (→)
7. (𝛼→ ∼𝛼) * (𝛼→ ∼𝛼) MP, 1, 6
8. ((𝛼→ ∼𝛼) * (𝛼→ ∼𝛼))→ (𝛼→ ∼𝛼) Ax11
9. 𝛼→ ∼𝛼 MP, 7, 8
10. ∼𝛼 MP, 5, 9
11. (𝛼 * 𝛼)→ ∼𝛼 DT, 3–10
12. 𝛼 Hypothesis
13. ∼(𝛼 * 𝛼) Repetition, 1
14. 𝛼→ ∼(𝛼 * 𝛼) DT, 12–13
15. ((𝛼 * 𝛼)→ ∼𝛼)→ ((𝛼→ ∼(𝛼 * 𝛼))→ (((𝛼 * 𝛼)→ ∼𝛼) * (𝛼→ ∼(𝛼 * 𝛼)))) Ax13
16. (𝛼→ ∼(𝛼 * 𝛼))→ (((𝛼 * 𝛼)→ ∼𝛼) * (𝛼→ ∼(𝛼 * 𝛼))) MP, 11, 15
17. ((𝛼 * 𝛼)→ ∼𝛼) * (𝛼→ ∼(𝛼 * 𝛼)) MP, 14, 16
18. ∼(𝛼 * 𝛼 * 𝛼) MP, 2, 17
19. ∼(𝛼 * 𝛼)→ ∼(𝛼 * 𝛼 * 𝛼) DT, 1–18

For QNPc.1, we need to prove that (x * y)→ z = x → (y → z).
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1. ((𝛼 * 𝛽)→ 𝛾)→ (𝛼→ (𝛽 → 𝛾))

1. (𝛼 * 𝛽)→ 𝛾 Hypothesis
2. 𝛼 Hypothesis
3. 𝛽 Hypothesis
4. 𝛼→ (𝛽 → (𝛼 * 𝛽)) Ax13
5. 𝛽 → (𝛼 * 𝛽) MP, 2, 4
6. 𝛼 * 𝛽 MP, 3, 5
7. 𝛾 MP, 1, 6
8. 𝛽 → 𝛾 DT, 3–7
9. 𝛼→ (𝛽 → 𝛾) DT, 2–8
10. ((𝛼 * 𝛽)→ 𝛾)→ (𝛼→ (𝛽 → 𝛾)) DT, 1–9

2. (𝛼→ (𝛽 → 𝛾))→ ((𝛼 * 𝛽)→ 𝛾)

1. 𝛼→ (𝛽 → 𝛾) Hypothesis
2. 𝛼 * 𝛽 Hypothesis
3. (𝛼 * 𝛽)→ 𝛼 Ax11
4. (𝛼 * 𝛽)→ (𝛽 → 𝛾) Lemma 4, 1, 3
5. 𝛽 → 𝛾 MP, 2, 4
6. (𝛼 * 𝛽)→ 𝛽 Ax12
7. 𝛽 MP, 2, 6
8. 𝛾 MP, 5, 7
9. (𝛼 * 𝛽)→ 𝛾 DT, 2–8
10. (𝛼→ (𝛽 → 𝛾))→ ((𝛼 * 𝛽)→ 𝛾) DT, 1–9

3. ∼((𝛼 * 𝛽)→ 𝛾)→ ∼(𝛼→ (𝛽 → 𝛾)) this is the Ax17 (→).

4. ∼(𝛼→ (𝛽 → 𝛾))→ ∼((𝛼 * 𝛽)→ 𝛾) this is the Ax17 (←).

For QNPc.2, we need to prove that x → (y * z)≡ (x → y) * (x → z).

1. (𝛼→ (𝛽 * 𝛾))→ ((𝛼→ 𝛽) * (𝛼→ 𝛾)) this is the Ax15 (→).

2. ((𝛼→ 𝛽) * (𝛼→ 𝛾))→ (𝛼→ (𝛽 * 𝛾)) this is the Ax15 (←).

For QNPc.3, we need to prove that ∼(x * y)≡ (x → ∼ y) * (y → ∼ x).

1. ∼(𝛼 * 𝛽)→ ((𝛼→ ∼ 𝛽) * (𝛽 → ∼𝛼)) this is the Ax14 (→).

2. ((𝛼→ ∼ 𝛽) * (𝛽 → ∼𝛼))→ ∼(𝛼 * 𝛽) this is the Ax14 (←).
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For QNPc.4, we need to prove that ∼(x → y)≡∼∼ x * ∼ y.

1. ∼(𝛼→ 𝛽)→ (∼∼𝛼 * ∼ 𝛽)

1. ∼(𝛼→ 𝛽) Hypothesis
2. ∼(𝛼→ 𝛽)→ ∼∼𝛼 Ax13
3. ∼∼𝛼 MP, 1, 2
4. ∼(𝛼→ 𝛽)→ ∼ 𝛽 Ax12
5. ∼ 𝛽 MP, 1, 4
6. ∼∼𝛼→ (∼ 𝛽 → (∼∼𝛼 * ∼ 𝛽)) Ax9
7. ∼ 𝛽 → (∼∼𝛼 * ∼ 𝛽) MP, 3, 6
8. ∼∼𝛼 * ∼ 𝛽 MP, 5, 7
9. ∼(𝛼→ 𝛽)→ (∼∼𝛼 * ∼ 𝛽) DT, 1–8

2. (∼∼𝛼 * ∼ 𝛽)→ ∼(𝛼→ 𝛽)

1. ∼∼𝛼 * ∼ 𝛽 Hypothesis
2. (∼∼𝛼 * ∼ 𝛽)→ ∼∼𝛼 Ax4
3. ∼∼𝛼 MP, 1, 2
4. (∼∼𝛼 * ∼ 𝛽)→ ∼ 𝛽 Ax11
5. ∼ 𝛽 MP, 1, 4
6. ∼∼𝛼→ (∼ 𝛽 → ∼(𝛼→ 𝛽)) Ax7
7. ∼ 𝛽 → ∼(𝛼→ 𝛽) MP, 3, 6
8. ∼(𝛼→ 𝛽) MP, 5, 7
9. (∼∼𝛼 * ∼ 𝛽)→ ∼(𝛼→ 𝛽) DT, 1–8

Proposition 11. 𝒱QNP ⊆ Alg*(ℒQNP).

Proof. Let A ∈ QNP, and let a, b, c ∈ A be generic elements. By Theorem 12, we assume

that A is a twist-structure, and from now on we also denote a = ⟨a1, a2⟩, b = ⟨b1, b2⟩

and c = ⟨c1, c2⟩. In the case of E(a → b) saying this is equivalent to proving that

𝜋1(a) ≤ 𝜋1(b), this is, a1 ≤ b1.

The axioms Ax1-Ax5 are also present in ℒQN4, so their checks will be omitted.

For equations and quasi-equations of Alg*(ℒQNP), we have
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• E((a ⊙ (a → b))→ (a ⊙ b))

On the one hand, 𝜋1[a ⊙ (a → b)] = 𝜋1[∼(a → ∼(a → b))] = 𝜋1[∼(⟨a1, a2⟩ →

∼(⟨a1, a2⟩ → ⟨b1, b2⟩))] = 𝜋1[∼(⟨a1, a2⟩ → ∼⟨a1 → b1,2a1 ∧ b2⟩)] = 𝜋1[∼(⟨a1, a2⟩ →

⟨2a1 ∧ b2,2(a1 → b1)⟩)] = 𝜋1[∼⟨a1 → (2a1 ∧ a2),2a1 ∧ 2(a1 → b1)⟩] = 𝜋1[⟨2a1 ∧

2(a1 → b1),2(a1 → (2a1 ∧ a2))⟩] = 2a1 ∧ 2(a1 → b1) = 2(a1 ∧ (a1 → b1)) =

2(a1 ∧ b1).

On the other hand, 𝜋1[a ⊙ b] = 𝜋1[∼(a → ∼ b)] = 𝜋1[∼(⟨a1, a2⟩ → ∼⟨b1, b2⟩)] =

𝜋1[∼(⟨a1, a2⟩ → ⟨b2,2b1⟩)] = 𝜋1[∼⟨a1 → b2,2a1 ∧ 2b1⟩] = 𝜋1[⟨2a1 ∧ 2b1,2(a1 →

b2)⟩] = 2a1 ∧ 2b1 = 2(a1 ∧ b1).

• E(∼∼ a → (∼ b → ∼(a → b)))

On the one hand, 𝜋1[∼∼ a] = 𝜋1[∼∼⟨a1, a2⟩] = 𝜋1[∼⟨a2,2a1⟩] = 𝜋1[2a1,2a2] =

2a1.

On the other hand, 𝜋1[∼ b → ∼(a → b)] = 𝜋1[∼⟨b1, b2⟩ → ∼(⟨a1, a2⟩ → ⟨b1, b2⟩)] =

𝜋1[⟨b2,2b1⟩ → ∼⟨a1 → b1,2a1 ∧ b2⟩] = 𝜋1[⟨b2,2b1⟩ → ⟨2a1 ∧ b2,2(a1 → b1)⟩] =

𝜋1[⟨b2 → (2a1 ∧ b2),2b2 ∧ 2(a1 → b1)⟩] = b2 → (2a1 ∧ b2).

• E(∼(a → b)→ ∼ b)

On the one hand, 𝜋1[∼(a → b)] = 𝜋1[∼(⟨a1, a2⟩ → ⟨b1, b2⟩)] = 𝜋1[∼⟨a1 → b1,2a1 ∧

b2⟩] = 𝜋1[2a1 ∧ b2,2(a1 → b1)] = 2a1 ∧ b2.

On the other hand, 𝜋1[∼ b] = 𝜋1[∼⟨b1, b2⟩] = 𝜋1[⟨b2,2b1⟩] = b2.

• E(∼(a → b)→ ∼∼ a)

On the one hand, 𝜋1[∼(a → b)] = 𝜋1[∼(⟨a1, a2⟩ → ⟨b1, b2⟩)] = 𝜋1[∼⟨a1 → b1,2a1 ∧

b2⟩] = 𝜋1[2a1 ∧ b2,2(a1 → b1)] = 2a1 ∧ b2.

On the other hand, 𝜋1[∼∼ a] = 𝜋1[∼∼⟨a1, a2⟩] = 𝜋1[∼⟨a2,2a1⟩] = 𝜋1[2a1,2a2] =

2a1.

• E(∼(a → a)→ b)

On the one hand, 𝜋1[∼(a → a)] = 𝜋1[∼(⟨a1, a2⟩ → ⟨a1, a2⟩)] = 𝜋1[∼⟨a1 → a1,2a1 ∧
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a2⟩] = 𝜋1[⟨2a1 ∧ a2,2(a1 → a1)⟩] = 2a1 ∧ a2 = 2a1 ∧ 2a2 = 2(a1 ∧ a2) = 20 = 0.

On the other hand, 𝜋1[b] = 𝜋1[⟨b1, b2⟩] = b1.

• E((a * b)→ a)

On the one hand, 𝜋1[a * b] = 𝜋1[⟨a1, a2⟩ * ⟨b1, b2⟩] = 𝜋1[⟨a1 ∧ b1, (a1 → b2) ∧ (b1 →

a2)⟩] = a1 ∧ b1.

On the other hand, 𝜋1[a] = 𝜋1[⟨a1, a2⟩] = a1.

• E((a * b)→ b)

On the one hand, 𝜋1[a * b] = 𝜋1[⟨a1, a2⟩ * ⟨b1, b2⟩] = 𝜋1[⟨a1 ∧ b1, (a1 → b2) ∧ (b1 →

a2)⟩] = a1 ∧ b1.

On the other hand, 𝜋1[b] = 𝜋1[⟨b1, b2⟩] = b1.

• E(a → (b → (a * b)))

On the one hand, 𝜋1[a] = 𝜋1[⟨a1, a2⟩] = a1.

On the other hand, 𝜋1[b → (a*b)] = 𝜋1[⟨b1, b2⟩ → (⟨a1, a2⟩*⟨b1, b2⟩)] = 𝜋1[⟨b1, b2⟩ →

⟨a1 ∧ b1, (a1 → b2) ∧ (b1 → a2)⟩] = 𝜋1[⟨b1 → (a1 ∧ b1),2b1 ∧ ((a1 → b2) ∧ (b1 →

a2))⟩] = b1 → (a1 ∧ b1).

In the case of E(a ↔ b) saying this is equivalent to proving that 𝜋1(a) = 𝜋1(b), this

is, a1 = b1. So,

• E(∼(a * b)↔ ((a → ∼ b) * (b → ∼ a)))

On the one hand, 𝜋1[∼(a * b)] = 𝜋1[∼(⟨a1, a2⟩ * ⟨b1, b2⟩)] = 𝜋1[∼⟨a1 ∧ b1, (a1 → b2) ∧

(b1 → a2)⟩] = 𝜋1[⟨(a1 → b2) ∧ (b1 → a2),2(a1 ∧ b1)⟩] = (a1 → b2) ∧ (b1 → a2).

On the other hand, 𝜋1[(a → ∼ b)*(b → ∼ a)] = 𝜋1[(⟨a1, a2⟩ → ∼⟨b1, b2⟩)*(⟨b1, b2⟩ →

∼⟨a1, a2⟩)] = 𝜋1[(⟨a1, a2⟩ → ⟨b2,2b1⟩) * (⟨b1, b2⟩ → ⟨a2,2a1⟩)] = 𝜋1[⟨a1 → b2,2a1 ∧

2b1⟩ * ⟨b1 → a2,2b1 ∧ 2a1⟩] = 𝜋1[⟨(a1 → b2) ∧ (b1 → a2), ((a1 → b2) → (2b1 ∧

2a1)) ∧ ((b1 → a2)→ (2a1 ∧ 2b1))⟩] = (a1 → b2) ∧ (b1 → a2).

• E((a → (b * c))↔ ((a → b) * (a → c)))

On the one hand, 𝜋1[(a → (b * c)] = 𝜋1[⟨a1, a2⟩ → (⟨b1, b2⟩ * ⟨c1, c2⟩)] = 𝜋1[⟨a1, a2⟩ →
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⟨b1 ∧ c1, (b1 → c2) → (c1 → b2)⟩] = 𝜋1[⟨a1 → (b1 ∧ c1),2a1 ∧ ((b1 → c2) → (c1 →

b2))⟩] = a1 → (b1 ∧ c1).

On the other hand, 𝜋1[(a → b) * (a → c)] = 𝜋1[(⟨a1, a2⟩ → ⟨b1, b2⟩) * (⟨a1, a2⟩ →

⟨c1, c2⟩)] = 𝜋1[⟨a1 → b1,2a1 ∧ b2⟩ * ⟨a1 → c1,2a1 ∧ c2⟩] = 𝜋1[(a1 → b1) ∧ (a1 →

c1), ((a1 → b1) → (2a1 ∧ c2)) → ((a1 → c1) → (2a1 ∧ b2))] = (a1 → b1) ∧ (a1 →

c1) = a1 → (b1 ∧ c1).

• E(∼(a * (b * c))↔ ∼((a * b) * c)))

On the one hand, 𝜋1[∼(a*(b*c))] = 𝜋1[∼(⟨a1, a2⟩*(⟨b1, b2⟩*⟨c1, c2⟩))] = 𝜋1[∼(⟨a1, a2⟩*

⟨b1 ∧ c1, (b1 → c2) ∧ (c1 → b2)⟩)] = 𝜋1[∼⟨a1 ∧ (b1 ∧ c1), (a1 → ((b1 → c2) ∧ (c1 →

b2))) ∧ ((b1 ∧ c1) → a2)⟩] = 𝜋1[⟨(a1 → ((b1 → c2) ∧ (c1 → b2))) ∧ ((b1 ∧ c1) →

a2),2(a1 ∧ (b1 ∧ c1))⟩] = (a1 → ((b1 → c2) ∧ (c1 → b2))) ∧ ((b1 ∧ c1)→ a2).

On the other hand, 𝜋1[∼((a*b)*c)] = 𝜋1[∼((⟨a1, a2⟩*⟨b1, b2⟩)*⟨c1, c2⟩)] = 𝜋1[∼(⟨a1 ∧

b1, (a1 → b2) ∧ (b1 → a2)⟩*⟨c1, c2⟩)] = 𝜋1[∼⟨(a1 ∧ b1) ∧ c1, ((a1 ∧ b1)→ c2) ∧ (c1 →

((a1 → b2) ∧ (b1 → a2)))⟩] = 𝜋1[⟨((a1 ∧ b1) → c2) ∧ (c1 → ((a1 → b2) ∧ (b1 →

a2))),2((a1 ∧ b1) ∧ c1)⟩] = ((a1 ∧ b1)→ c2) ∧ (c1 → ((a1 → b2) ∧ (b1 → a2))).

We have to prove that E(a → a) and E(∼ a → ∼ a). These are easy to check.

We have to prove that if E(a) and E(a → b) then E(b). Therefore, we will use

the fact that |a| → b = b. Note that,⎧⎪⎨⎪⎩ |a| = |⟨a1, a2⟩| = ⟨a1, a2⟩ → ⟨a1, a2⟩ = ⟨a1 → a1,2a1 ∧ a2⟩ = ⟨1,2a1 ∧ a2⟩

|a| → b = ⟨1,2a1 ∧ a2⟩ → ⟨b1, b2⟩ = ⟨1→ b1,21 ∧ b2⟩ = ⟨b1, b2⟩ = b

Thus (a → a)→ b = b, but we have that a → a = a and therefore a → b = b,

but as a → b = (a → b)→ (a → b) and a → b = b, then b = b → b and this is what we

wanted to prove.

We have to prove that if E(∆(a, b)) then a = b. So, E(a → b), E(b → a),

E(∼ a → ∼ b), E(∼ b → ∼ a), we give us a1 ≤ b1, b1 ≤ a1, a2 ≤ b2, b2 ≤ a2, respectively.

Therefore a = b.
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Corollary 2. The class of 𝒱QNP and the class of Alg*(ℒQNP)-algebras coincide.

5.2 {∼, *,⇒,∧}-fragment

We will begin our section with definitions and important results for the unders-

tanding of the study of the {∼, *,⇒,∧}-fragment of the quasi-Nelson logic.

Semihoops were introduced in [8, Def. 3.6] and can be defined as an algebra

A = ⟨A; ∧, *,⇒, 1⟩ of type ⟨2, 2, 2, 0⟩ such that:

1. ⟨A; ∧, 1⟩ is a semilattice with order ≤ and 1 as top element.

2. ⟨A,≤; *,⇒, 1⟩ is a pocrim.

The preceding definition is slightly more informative than the original one, but

easily seen to be equivalent to it. A hoop [8, Rem. 3.11] may be defined as a semihoop

⟨A; ∧, *,⇒, 1⟩ that satisfies the divisibility equation:

1. x ∧ y = x * (x ⇒ y), ∀ x , y ∈ A.

For further background on hoops, see [5, 3].

Definition 54 ([23], Def. 5.1). A quasi-Nelson semihoop (QNS) is an algebra

A = ⟨A; *,→,∧,∼, 0, 1⟩ of type ⟨2, 2, 2, 1, 0, 0⟩ such that:

(QNSa) ⟨A; *,→,∼, 0, 1⟩ is a quasi-Nelson pocrim.

(QNSb) ⟨A; ∧, 0, 1⟩ is a bounded semilattice whose partial order coincides with that of

the pocrim reduct of A.

(QNSc) For all x , y ∈ A, we have:

(QNSc.1) ∼∼∼ x = ∼ x .

(QNSc.2) ∼∼(x ∧ y) = ∼∼ x ∧ ∼∼ y.

(QNSc.3) ∼∼ x ∧ (y ⊕ z) = (x ∧ y)⊕ (x ∧ z).

(QNSc.4) x ⊕ y ≡ x2 ⊕ y2.
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The class of all quasi-Nelson semihoops will be denoted by QNS. It is easy to

verify that every member of QNS is, indeed, a semihoop in the terminology of [8], though

not necessarily a hoop.

We are now ready to introduce the class of twist-algebras that correspond to

quasi-Nelson semihoops.

Definition 55 ([23], Def. 5.3). An algebra S = ⟨S ; ∧,⊕,→, 0, 1⟩ is a ⊕-implicative

semilattice such that:

1. ⟨S ; ∧,→,2, 0, 1⟩ is a bounded implicative semilattice with a nucleus given by

2x := x ⊕ x .

2. ⟨S ; ⊕⟩ is a commutative semigroup.

3. The following equations are satisfied:

a) x ⊕ 1 = 1.

b) 2x = x ⊕ 0 = x ⊕ (x ∧ y).

c) x ≤ x ⊕ y = 2x ⊕2y.

d) 2x ∧ (y ⊕ z) = (x ∧ y)⊕ (x ∧ z).

Definition 56 ([23], Def. 5.6). Let S = ⟨S ; ∧,⊕,→, 0, 1⟩ be a ⊕-implicative semilattice.

Define the algebra S◁▷ = ⟨S◁▷; ∧, *,→,∼, 0, 1⟩ with universe S◁▷ := {⟨a1, a2⟩ ∈ S × S :

a2 = 2a2, a1 ∧ a2 = 0} and operations given, for all ⟨a1, a2⟩, ⟨b1, b2⟩ ∈ S × S , by:

0 := ⟨0, 1⟩

1 := ⟨1, 0⟩

∼⟨a1, a2⟩ := ⟨a2,2a1⟩

⟨a1, a2⟩ * ⟨b1, b2⟩ = ⟨a1 ∧ b1, (a1 → b2) ∧ (b1 → a2)⟩

⟨a1, a2⟩ → ⟨b1, b2⟩ := ⟨a1 → b1,2a1 ∧ b2⟩

⟨a1, a2⟩ ∧ ⟨b1, b2⟩ = ⟨a1 ∧ b1, a2 ⊕ b2⟩
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A QNS twist-algebra over S is any subalgebra A ≤ S◁▷ satisfying 𝜋1[A] = S .

Theorem 14 ([23], Thm. 5.9). Every A ∈ QNS is isomorphic to a QNS twist-algebra

over A◁▷ through the map 𝜄 : A→ A◁▷ × A◁▷ given by 𝜄(a) := ⟨[a], [∼ a]⟩ for all a ∈ A.

5.2.1 A Hilbert-style calculus

In this subsection we introduce a Hilbert-style calculus that determines a logic,

henceforth denoted by ℒQNS. Our aim is to show that ℒQNS is algebraizable, and that

its equivalent algebraic semantics is precisely the variety 𝒱QNS.

The Hilbert-system for ℒQNS consists of the following axiom schemes together

with the single inference rule of modus ponens (MP): 𝛼, 𝛼→ 𝛽 ⊢ 𝛽.

Ax1 𝛼→ (𝛽 → 𝛼)

Ax2 (𝛼→ (𝛽 → 𝛾))→ ((𝛼→ 𝛽)→ (𝛼→ 𝛾))

Ax3 ∼∼∼𝛼→ ∼𝛼

Ax4 (𝛼→ 𝛽)→ (∼∼𝛼→ ∼∼ 𝛽)

Ax5 𝛼→ ∼∼𝛼

Ax6 (𝛼⊙ (𝛼→ 𝛽))→ (𝛼⊙ 𝛽)

Ax7 ∼∼𝛼→ (∼ 𝛽 → ∼(𝛼→ 𝛽))

Ax8 ∼(𝛼→ 𝛽)→ ∼ 𝛽

Ax9 ∼(𝛼→ 𝛽)→ ∼∼𝛼

Ax10 ∼(𝛼→ 𝛼)→ 𝛽

Ax11 (𝛼 * 𝛽)→ 𝛼

Ax12 (𝛼 * 𝛽)→ 𝛽

Ax13 𝛼→ (𝛽 → (𝛼 * 𝛽))

Ax14 ∼(𝛼 * 𝛽)↔ ((𝛼→ ∼ 𝛽) * (𝛽 → ∼𝛼))

Ax15 (𝛼→ (𝛽 * 𝛾))↔ ((𝛼→ 𝛽) * (𝛼→ 𝛾))
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Ax16 ∼(𝛼 * (𝛽 * 𝛾))↔ ∼((𝛼 * 𝛽) * 𝛾))

Ax17 ∼((𝛼 * 𝛽)→ 𝛾)↔ ∼(𝛼→ (𝛽 → 𝛾))

Ax18 (𝛼 ∧ 𝛽)→ 𝛼

Ax19 (𝛼 ∧ 𝛽)→ 𝛽

Ax20 (𝛼→ 𝛽)→ ((𝛼→ 𝛾)→ (𝛼→ (𝛽 ∧ 𝛾)))

Ax21 ∼𝛼→ ∼(𝛼 ∧ 𝛽)

Ax22 ∼(𝛼 ∧ 𝛽)→ ∼(𝛽 ∧ 𝛼)

Ax23 (∼𝛼→ ∼ 𝛽)→ (∼(𝛼 ∧ 𝛽)→ ∼ 𝛽)

Ax24 (∼𝛼→ ∼ 𝛽)→ ((∼ 𝛾 → ∼ 𝜃)→ (∼(𝛼 ∧ 𝛾)→ ∼(𝛽 ∧ 𝜃)))

Ax25 ∼(𝛼→ 𝛽)↔ ∼∼(𝛼 ∧ ∼ 𝛽)

Ax26 ∼(𝛼 ∧ (𝛽 ∧ 𝛾))↔ ∼((𝛼 ∧ 𝛽) ∧ 𝛾)

Ax27 ∼∼(𝛼 ∧ 𝛽)↔ (∼∼𝛼 ∧ ∼∼ 𝛽)

Ax28 ∼∼𝛼 ∧ (𝛽 ⊕ 𝛾)↔ (𝛼 ∧ 𝛽)⊕ (𝛼 ∧ 𝛾)

Ax29 𝛼⊕ 𝛽 ↔ 𝛼2 ⊕ 𝛽2

Axioms Ax1-Ax17 together with modus ponens constitute an axiomatization

of the ℒQNP. Furthemore, axioms Ax18-Ax26 are choose between the axioms of ℒQN4,

thus we prove that our calculus is algebraizable and that its equivalent algebraic semantics

is the class of QNS as defined in Definition 54.

Remark 14. The Deduction Theorem holds for ℒQNS.

5.2.2 ℒQNS is BP-Algebraizable

In this subsection we prove that the calculus introduced in the previous subsection

is algebraizable in sense of Blok and Pigozzi. Using this result, we will axiomatize the

equivalent algebraic semantics of ℒQNS via the algorithm of Theorem 8 and show that is

term-equivalent to the variety 𝒱QNS.
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Theorem 15. ℒQNS is BP-algebraizable with E(𝛼) := {𝛼 = 𝛼 → 𝛼} and ∆(𝛼, 𝛽) :=

{𝛼→ 𝛽, 𝛽 → 𝛼,∼𝛼→ ∼ 𝛽,∼ 𝛽 → ∼𝛼}.

Proof. By Theorem 7, we have prove (Ref), (MP), (Alg) and (Cong). The first three

follow the same reasoning of Theorem 11. As to (Cong), we need to prove it for each

connective 𝜆 ∈ {→, *,∧,∼}. For (∼) and (∧), we have the same reasoning of Theorem

11. Furthermore, for (*) and (→), we have the same reasoning of Theorem 13.

Having proved that our calculus is algebraizable in the sense Blok and Pigozzi,

we have a corresponding equivalent algebraic semantics Alg*(ℒQNS) which satisfies the

following equations and quasi-equations:

1. E(p) for each p ∈ Ax.

2. E(∆(p, p)).

3. E(p) and E(p → q) implies E(q).

4. E(∆(p, q)) implies p = q.

Now, in order to prove that the class of algebras Alg*(ℒQNS) is term-equivalent

to the class of QNS (Definition 54), that is, the content of the next propositions.

Proposition 12. Alg*(ℒQNS) ⊆ 𝒱QNS.

Proof. It is easy to see that QNSa is true for A ∈ Alg*(ℒQNS).

For proving QNSb, we need to show that ⟨A; ∧⟩ is a bounded semilattice.

• ⟨A; ∧⟩ is a semilattice.

1. x ∧ (y ∧ z) = (x ∧ y) ∧ z , see proof in Proposition 8.

2. x ∧ y = y ∧ x , see proof in Proposition 8.

3. x ∧ x = x , see proof in Proposition 8.

• x ∧ 0 = 0.

1. (x ∧ ⊥)→ ⊥ this is Ax19.
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2. ⊥ → (x ∧ ⊥)

1. ⊥ Hypothesis
2. ∼(𝛼→ 𝛼)→ (𝛼 ∧ ⊥) Ax10
3. ⊥ → (𝛼 ∧ ⊥) Definition, 2
4. 𝛼 ∧ ⊥ MP, 1, 3
5. ⊥ → (𝛼 ∧ ⊥) DT, 1–4

3. ∼(x ∧ ⊥)→ ∼⊥

1. ∼(𝛼 ∧ ⊥) Hypothesis
2. 𝛼→ 𝛼 Proposition 1
3. ⊤ Definition, 2
4. ∼⊥ Definition, 3
5. ∼(𝛼 ∧ ⊥)→ ∼⊥ DT, 1–4

4. ∼⊥ → ∼(x ∧ ⊥)

1. ∼⊥ → ∼(⊥ ∧ 𝛼) Ax21
2. ∼(⊥ ∧ 𝛼)→ ∼(𝛼 ∧ ⊥) Ax22
3. ∼⊥ → ∼(𝛼 ∧ ⊥) Lemma 4, 1, 2

For proving QNSc.1, ∼∼∼ x = ∼ x , we have:

1. ∼∼∼𝛼→ ∼𝛼, this is Ax3.

2. ∼𝛼→ ∼∼∼𝛼, this is instantiation of Ax5.

3. ∼∼∼∼𝛼→ ∼∼𝛼, this is instantiation of Ax3.

4. ∼∼𝛼→ ∼∼∼∼𝛼, this is instantiation of Ax5.

For proving QNSc.2, ∼∼(x ∧ y) = ∼∼ x ∧ ∼∼ y, we have:

1. ∼∼(𝛼 ∧ 𝛽)→ (∼∼𝛼 ∧ ∼∼ 𝛽), this is Ax27 (→).

2. (∼∼𝛼 ∧ ∼∼ 𝛽)→ ∼∼(𝛼 ∧ 𝛽), this is Ax27 (←).

For proving QNSc.3, ∼∼ x ∧ (y ⊕ z) = (x ∧ y)⊕ (x ∧ z), we have:

1. ∼∼𝛼 ∧ (𝛽 ⊕ 𝛾)→ (𝛼 ∧ 𝛾)⊕ (𝛼 ∧ 𝛾), this is Ax28 (→).

2. ((𝛼 ∧ 𝛾)⊕ (𝛼 ∧ 𝛾))→ ∼∼𝛼 ∧ (𝛽 ⊕ 𝛾), this is Ax28 (←).
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For proving QNSc.4, x ⊕ y ≡ x2 ⊕ y2, we have:

1. (𝛼⊕ 𝛽)→ 𝛼2 ⊕ 𝛽2, this is Ax29 (→).

2. (𝛼2 ⊕ 𝛽2)→ (𝛼⊕ 𝛽), this is Ax29 (←).

Proposition 13. 𝒱QNS ⊆ Alg*(ℒQNS).

Proof. Let A ∈ QNS, and let a, b, c ∈ A be generic elements. By Theorem 14, we assume

that A is a twist-structure, and from now on we also denote a = ⟨a1, a2⟩, b = ⟨b1, b2⟩

and c = ⟨c1, c2⟩. In the case of E(a ↔ b) saying this is equivalent to proving that

𝜋1(a) = 𝜋1(b), this is, a1 = b1.

The axioms Ax1-Ax17 are also present in ℒQNP, so their checks will be omitted.

Furthermore, the axioms Ax18-Ax27 are also present in ℒQN4, so their checks will be

omitted. For equations and quasi-equations of Alg*(ℒQNS), we have

• E((∼∼ a ∧ (b ⊕ c))↔ ((a ∧ b)⊕ (a ∧ c)))

On the one hand, 𝜋1[∼∼ a ∧ (b⊕c)] = 𝜋1[∼∼ a ∧ (∼(∼ b ∧ ∼ c))] = 𝜋1[∼∼⟨a1, a2⟩ ∧

(∼(∼⟨b1, b2⟩ ∧ ∼⟨c1, c2⟩))] = 𝜋1[∼⟨a2,2a1⟩ ∧ (∼(⟨b2,2b1⟩ ∧ ⟨c2,2c1⟩))] = 𝜋1[⟨2a1,2a2⟩ ∧

(∼⟨b2 ∧ c2,2b1 ⊕ 2c1⟩)] = 𝜋1[⟨2a1,2a2⟩ ∧ ⟨2b1 ⊕ 2c1,2(b2 ∧ c2)⟩] = 𝜋1[⟨2a1 ∧

(2b1 ⊕ 2c1),2a2 ⊕ 2(b2 ∧ c2)⟩] = 2a1 ∧ (2b1 ⊕ 2c1) = (2a1 ∧ 2b1) ⊕ (2a1 ∧

2c1) = 2(a1 ∧ b1)⊕2(a1 ∧ c1).

On the other hand, 𝜋1[(a ∧ b) ⊕ (a ∧ c)] = 𝜋1[∼(∼(a ∧ b) ∧ ∼(a ∧ c))] =

𝜋1[∼(∼(⟨a1, a2⟩ ∧ ⟨b1, b2⟩) ∧ ∼(⟨a1, a2⟩ ∧ ⟨c1, c2⟩))] = 𝜋1[∼(∼⟨a1 ∧ b1, a2 ⊕ b2⟩ ∧

∼⟨a1 ∧ c1, a2 ⊕ c2⟩)] = 𝜋1[∼(⟨a2 ⊕ b2,2(a1 ∧ b1)⟩ ∧ ⟨a2 ⊕ c2,2(a1 ∧ c1)⟩)] =

𝜋1[∼⟨(a2 ⊕ b2) ∧ (a2 ⊕ c2),2(a1 ∧ b1) ⊕ 2(a1 ∧ c1)⟩] = 𝜋1[⟨2(a1 ∧ b1) ⊕ 2(a1 ∧

c1),2((a2 ⊕ b2) ∧ (a2 ⊕ c2))⟩] = 2(a1 ∧ b1)⊕2(a1 ∧ c1).

• E((a ⊕ b)↔ (a2 ⊕ b2))

On the one hand, 𝜋1[a ⊕ b] = 𝜋1[∼(∼ a ∧ ∼ b)] = 𝜋1[∼(∼⟨a1, a2⟩ ∧ ∼⟨b1, b2⟩)] =

𝜋1[∼(⟨a2,2a1⟩ ∧ ⟨b2,2b1⟩)] = 𝜋1[∼⟨a2 ∧ b2,2a1 ⊕ 2b1⟩] = 𝜋1[⟨2a1 ⊕ 2b1,2(a2 ∧
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b2)⟩] = 2a1 ⊕2b1.

On the other hand, 𝜋1[(a2⊕b2)] = 𝜋1[∼(∼ a2 ∧ ∼ b2)] = 𝜋1[∼(∼(a*a) ∧ ∼(b*b))] =

𝜋1[∼(∼(⟨a1, a2⟩ * ⟨a1, a2⟩) ∧ ∼(⟨b1, b2⟩ * ⟨b1, b2⟩)] = 𝜋1[∼(∼⟨a1 ∧ a1, (a1 → a2) ∧

(a1 → a2)⟩) ∧ ∼(⟨b1 ∧ b1, (b1 → b2) ∧ (b1 → b2)⟩)] = 𝜋1[∼(∼⟨a1, a1 → a2⟩ ∧

∼⟨b1, b1 → b2⟩)] = 𝜋1[∼(⟨a1 → a2,2a1⟩ ∧ ⟨b1 → b2,2b1⟩)] = 𝜋1[∼⟨(a1 → a2) ∧

(b1 → b2),2a1 ⊕2b1⟩] = 𝜋1[⟨2a1 ⊕2b1,2((a1 → a2) ∧ (b1 → b2))⟩] = 2a1 ⊕2b1.

We have to prove that E(a → a) and E(∼ a → ∼ a). These are easy to check.

We have to prove that if E(a) and E(a → b) then E(b). Therefore, we will use

the fact that |a| → b = b. Note that,⎧⎪⎨⎪⎩ |a| = |⟨a1, a2⟩| = ⟨a1, a2⟩ → ⟨a1, a2⟩ = ⟨a1 → a1,2a1 ∧ a2⟩ = ⟨1,2a1 ∧ a2⟩

|a| → b = ⟨1,2a1 ∧ a2⟩ → ⟨b1, b2⟩ = ⟨1→ b1,21 ∧ b2⟩ = ⟨b1, b2⟩ = b

Thus (a → a)→ b = b, but we have that a → a = a and therefore a → b = b,

but as a → b = (a → b)→ (a → b) and a → b = b, then b = b → b and this is what we

wanted to prove.

We have to prove that if E(∆(a, b)) then a = b. So, E(a → b), E(b → a),

E(∼ a → ∼ b), E(∼ b → ∼ a), we give us a1 ≤ b1, b1 ≤ a1, a2 ≤ b2, b2 ≤ a2, respectively.

Therefore a = b.

Corollary 3. The class of 𝒱QNS and the class of Alg*(ℒQNS)-algebras coincide.

72



6 Conclusion

The present study began by laying down the basic concepts and terminologies

involving algebra, logic and their algebrization. Later, by studying Hilbert calculi and its

algebraic semantics, we were able to provide new results about his algebraic properties,

carried out mainly through the mathematical tool called twist-algebra representation.

The dissertation also aimed to provide a better understanding of quasi-Nelson

logics, by presenting an equivalent algebraic semantics for the logics of some fragments

of quasi-Nelson logic, namely: pocrims (ℒQNP) and semihoops (ℒQNS); in addition to

the logic of quasi-N4-lattices (ℒQN4), many of which had never been considered in the

literature so far.

However, Busaniche et al. introduces in [7], a very general twist construction

based on the notion of Nelson conucleus, whose main idea is that the various twist

representations can be obtained uniformly by employing a unary function that realizes,

in each algebra, a special interior operator (a conucleus). This approach is extended to

quasi-Nelson algebras, which may suggest an applicability to the subreducts considered

in this work.

As prospects for future work, we suggest the use of the Lean functional program-

ming language, which can also be used as an interactive theorem prover, for the proofs

involved in this research. Thus, the derivations necessary for the completeness proofs will

be verified with the aid of this tool. In this way, the presentation of the proof given in

this work will be more accessible, understandable and trustworthy to the community.
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Research on quasi-N4-lattices is in a preliminary stage, and only time will tell

to what extent further investigations on this and related classes of algebras will prove

fruitful.

Refining the twist construction. By Theorem 10, we know that we can

identify an arbitrary quasi-N4-lattice A with a subalgebra of B◁▷ for some nuclear

Brouwerian algebra B. This establishes a correspondence (which may be rephrased as

an adjunction between suitably defined categories) between each nuclear Brouwerian

algebra B and the family of quasi-N4-lattices that canonically embed into B. As shown

in [22, Prop. 2.5], two further parameters ∇ and ∆ (respectively, a lattice filter and an

ideal of B) are sufficient to uniquely determine a twist-algebra having the following set

as underlying universe:

Tw(B,∇,∆) := {⟨a1, a2⟩ ∈ B × B : a2 = 2a2, a1 ∨ a2 ∈ ∇, a1 ∧ a2 ∈ ∆}.

We thus have a one-to-one correspondence between triples (B,∇,∆) and quasi-N4-lattices,

but we do not currently know whether every quasi-N4-lattice arises in this way. If the

latter was true, then the correspondence would yield an equivalence between the algebraic

category of quasi-N4-lattices and a category having as objects triples (B,∇,∆); this is

indeed known to hold for N4-lattices [24].

Quasi-N4-lattices and relevant algebras. The paper [12] introduced the

variety of generalized Sugihara monoids as a non-involutive generalization of algebraic

models of the relevant logic R-mingle, a class of algebras known as Sugihara monoids.

One of the main results of Galatos and Raftery is that generalized Sugihara monoids

are representable through a twist construction which has striking similarities with the

one for quasi-N4-lattices. The factor algebras employed in their twist construction are in

fact nuclear Brouwerian algebras that are also prelinear (i.e. representable as subdirect

products of linearly ordered ones).
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While the equational properties of the two above-mentioned classes of algebras

suggest that a direct comparison between (generalized) Sugihara monoids and (quasi-)

N4-lattices is not likely to prove fruitful, we speculate that the twist construction may be

used to establish a meaningful connection. Indeed, since the twist representation is used

in [12] to establish a categorical equivalence between generalized Sugihara monoids and

prelinear nuclear Brouwerian algebras, it may be possible to apply a similar strategy to

quasi-N4-lattices, namely, single out a subcategory of (perhaps enriched) quasi-N4-lattices

that may be proved to be equivalent as a category to the prelinear nuclear Brouwerian

algebras considered in [12]. An equivalence with generalized Sugihara monoids would

then be obtained as an immediate corollary.

Connexive Algebras. Heinrich Wansing in 2005, [27], introduces the Connexive

Logic 𝒞, and his presentation suggests that 𝒞 is a constructive logic; thus, related to David

Nelson’s constructive logic with strong negation. 𝒞 is the logic determined by the Hilbert-

style calculus having modus ponens as its only rule, and the schematic axioms: (C1) the

axioms of Positive Intuitionistic Logic, (C2) ∼∼𝛼 ↔ 𝛼, (C3) ∼(𝛼 ∨ 𝛽) ↔ ∼(∼𝛼 ∧

∼ 𝛽), (C4) ∼(𝛼 ∧ 𝛽)↔ ∼(∼𝛼 ∨ ∼ 𝛽), (C5) ∼(𝛼→ 𝛽)↔ (𝛼→ ∼ 𝛽). Recently, Fazio

and Odintsov, in [9], show that axiomatic extensions of 𝒞 are BP-algebraizable with

respect to varieties of C-algebras, using twist-products (specifically, full connexive twist

structure). It is worthwhile investigating the relationship between the representation by

Fazio and Odintsov ([9]) of C-algebras and the twist representation of N4-lattices, and

possible generalizations to a non-involutive setting.
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